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Abstract Beta-amyloid accumulation within arterial walls in cerebral amyloid
angiopathy is associated with the onset of Alzheimer’s disease. However, the mech-
anism of beta-amyloid clearance along peri-arterial pathways in the brain is not well
understood. In this study, we investigate a transport mechanism in the arterial base-
ment membrane consisting of forward-propagating waves and their reflections. The
arterial basement membrane is modeled as a periodically deforming annulus filled
with an incompressible single-phase Newtonian fluid. A reverse flow, which has been
suggested in literature as a beta-amyloid clearance pathway, can be induced by the
motion of reflected boundary waves along the annular walls. The wave amplitude and
the volume of the annular region govern the flow magnitude and may have important
implications for an aging brain.Magnitudes of transport obtained from control volume
analysis and numerical solutions of the Navier–Stokes equations are presented.
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1 Introduction

Alzheimer’s disease (AD) is the seventh leading cause of death in the United States
(Alzheimer’s Association 2010). The accumulation of beta-amyloid proteins (A β) in
the vasculature walls of the brain is a characteristic of cerebral amyloid angiopathy
(CAA) and AD (Preston et al. 2003). There is significant evidence suggesting that
pathologies associated with A β clearance failure in the brain contribute to the occur-
rence of AD (Abbott 2004; Hawkes et al. 2011; Iliff et al. 2012; Mawuenyega et al.
2010; Tanzi et al. 2004; Weller et al. 2010). Known mechanisms for A β elimination
from the brain include proteolltic degradation (Tanzi et al. 2004), receptor-mediated
transport (Tanzi et al. 2004; Knopf et al. 1995), and flow in the perivascular structures
(Carare et al. 2008; Iliff et al. 2012). However, the biomechanical mechanism of A β

clearance in the perivascular structures remains unclear. Previous studies have sug-
gested that pulsating blood vessels may be associated with A β clearance through this
pathway (Hawkes et al. 2011; Iliff et al. 2012; Mawuenyega et al. 2010).

Several theoreticalmodels of perivascular flowhave been proposed and investigated
(Bilston et al. 2003; Schley et al. 2006; Wang and Olbricht 2011). Bilston et al. (2003)
modeled the flow along the perivascular space to determine whether local arterial
pulsations are sufficient to transport cerebral spinal fluid (CSF) in the spinal cord. Their
findings indicate that the CSF flows in the same direction as arterial pulsations even
against an adverse pressure gradient. Wang and Olbricht (2011) modeled peristaltic
motion on a porous perivascular pathway as a mechanism of interstitial fluid (ISF)
transport. It is worth noting that both Bilston et al. (2003) and Wang and Olbricht
(2011) focused on transport outside the blood vessels. In this study our interest is on
modeling the transport pathway in the arterial basement membrane (ABM), which is
part of the blood vessel wall.

Experimental evidence by Carare et al. (2008) and Hawkes et al. (2013) confirm
that the ABM is a conduit for A β transport out of the brain while the arterial lumen
provides oxygen-rich blood to the brain parenchyma. The ABM is within the arterial
wall that is separated with multiple layers of smooth muscles cells (Carare et al. 2008).
As shown in Fig. 1, it is postulated that the ISF in the ABM is transported in the reverse
direction of blood flow (Carare et al. 2008). Several mechanisms of A β clearance in
the reverse direction were proposed by Schley et al. (2006). One mechanism was
the existence of global pressure differences in the brain. However, this mechanism
could not explain preferential drainage in the ABM because ISF could also flow in
the para-venous pathways. Another mechanism considered was that drainage can be
achieved by A β actively adhering to and detaching from the walls of the ABM to
yield a one-way valve-like effect during each pulse cycle (Schley et al. 2006). Still,
this mechanism does not explain the observation of passive soluble tracers traveling
in the reverse direction through the ABM (Carare et al. 2008). This leads us to believe
that the transport in the ABM is perhaps facilitated by a hydrodynamic mechanism.

Iliff et al. (2013) reportedmeasurements onwave pulsations along brain penetrating
arteries/arterioles and Hughes et al. (2014) and Weller et al. (2008) suggested wave
reflection may be a critical mechanism for A β clearance. In this paper, we investigate
a preferential transport theory where reverse transport is hydrodynamically driven by
the superposition of forward-propagating waves and their associated wave reflections
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Fig. 1 A diagram depicting the axial view of a cerebral artery, the direction of blood flow, and the reverse
ISF flow in the ABM. The ABM is between the layers of smooth muscle cells that are depicted as ovals

along the arterial lumen. The forward-propagating waves are generated by the pul-
sation of the heart, while the reflection waves are created at the arterial branching
junctions or any other sites with sudden changes in arterial geometry and/or elastic
properties (Alastruey et al. 2012; Papageorgiou et al. 1990). Our model helps pre-
dict the lack of ISF drainage following cardiac arrest in mice (Carare et al. 2008)
and incorporates physiological relevant parameters based on the extensive literature
available for reflected boundary waves in blood vessels (Fung 1984; Li 2004; Nichols
et al. 2011). We analyzed the direction of perivascular flow under various wave con-
ditions via a hydrodynamic control volume analysis and corroborated the results with
the Navier–Stokes equations numerically solved by the finite volume method. These
modeling tools also provided a means for us to gain insights into how the peri-arterial
transport can be adversely affected by aging abnormalities such as basement mem-
brane thickening (Farkas and Luiten 2001) and an increase in arterial wall stiffness
(Nichols 2005).

2 Theoretical considerations

2.1 Direction of overall flow through a periodically deforming annulus

We model the ABM as an axisymmetrical annulus between concentric cylinders of
equal length l (Fig. 2), which is equal to the distance between two arterial bifurcation
points. We assume that the lateral surfaces of the annulus are impermeable to the
fluid, and thus the overall fluid transport is only in the axial direction, x . The incom-
pressible ISF in the annulus has a water-like density of 1000 kg/m3 and a viscosity of
0.0035 kg/m s−1 (Yao et al. 2012). In the unperturbed state (Fig. 2a), the annulus is
defined by radii bi and bo, where the subscripts i and o indicate the inner and outer
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Fig. 2 Depiction of an annulus with two openings A1 and A2 at x = 0 and x = l, respectively. a An
unperturbed annulus; b a deformed annulus at an instant in time with A1 > A2

lateral surfaces, respectively. The end openings of the annulus have cross-sectional
areas A1 and A2, where the subscripts 1 and 2 indicate location at x = 0 and x = l,
respectively. As shown in Fig. 2b, a traveling boundary wave causes the annulus to
deform and its cross-sectional area to vary in both x-position and time, t .

It is anticipated that the overall flow magnitude and direction are the integrated
effect of the rate of change of the annular volume and the instantaneous cross-sectional
area ratio between the two annular openings, α ≡ A2/A1. Given that the ISF is an
incompressible fluid, the rate of change of the annular volume provides the driving
force for fluidmotion. That is, without expansion or compression of the annular region,
the flow rates at A1 and A2 should be zero. On the other hand, α determines the
instantaneous overall flow direction as a larger flow magnitude can be found at the
larger opening where the flow resistance is lower, given that the flow resistance is
inversely proportional to the cross-sectional area squared. Figure 3 demonstrates the
preferential flow direction of an incompressible fluid under different scenarios of
annular volume changes and values of α. In Fig. 3a, b an expanding annulus causes
the fluid to enter the annular region. If α < 1, more fluid enters at A1 than at A2 and
consequently the overall flow direction is +x (Fig. 3a); if α > 1 more fluid enters
A2 and the overall flow direction is reversed (Fig. 3b). Similar inference can also be
made for the overall flow direction when the annular volume is contracting and the
fluid inside exits the annular region (Fig. 3c, d). Therefore, an overall reverse flow
through the annulus can be obtained if a surface deformation cycle consists of longer
durations of the scenarios depicted in Fig. 3b, d than the ones depicted in Fig. 3a, c. In
the following sections, we present examples that exhibit the characteristics of motion
associated with Fig. 3b, d that generate a reverse flow.

2.2 Boundary waves

The traveling waves are prescribed as radius functions ri (x, t) and ro(x, t).We assume
that wave reflections can occur on the outer and inner lateral surfaces at x = 0 and
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Fig. 3 Schematics of preferential flows in an axisymmetric annulus with length l under the four possible
types of deformation. The cross-sectional areas A1 and A2 are located at x = 0 and x = l, respectively.
a Expanding annular volume (dV/dt > 0) with α < 1, b expanding annular volume (dV/dt > 0) with
α > 1, c contracting annular volume (dV/dt < 0) with α > 1, d contracting annular volume (dV/dt < 0)
with α < 1. V represents the instantaneous volume of the annulus and α = A2/A1. The size of the arrows
is indicative of the instantaneous flow rate

x = l which are the vessel bifurcation sites with a local stiffness discontinuity. All
waves on both lateral surfaces are assumed to have the same wave number, k, and
angular frequency, ω. The amplitudes of the heart driven forward propagating pulse
wave on both lateral surfaces are assumed to be a. These waves are non-dispersive and
undamped during propagation. Assuming that the waves take the form of sinusoidal
functions, the outer and inner annular surfaces can be described by:

ro(x, t) = a Re

{
M−1∑
n=0

[
R2,oR1,o exp(2ikl)

]n exp (−iωt)
[
exp(ikx)

+R2,o exp(−ikx + 2ikl)
] }+ bo (1)

ri (x, t) = a Re

{
M−1∑
n=0

[
R2,i R1,i exp(2ikl)

]n exp (−iωt)
[
exp(ikx)
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+R2,i exp(−ikx + 2ikl)
] }+ bi (2)

where M is an integer greater than or equal to 1. R1,o and R2,o are the wave reflection
coefficients for the outer lateral wall at x = 0 and x = l, respectively; R1,i and R2,i
are the wave reflection coefficients for the inner lateral wall at x = 0 and x = l,
respectively. All reflection coefficients must have numerical values between −1 and
1. Equations (1) and (2) each represents a forward-propagating wave superimposed
with wave reflections between x = 0 and x = l, and 2M − 1 is the total number of
wave reflections (Fig. 4).

For M = 1 (Fig. 4a), the forward-propagating wave is reflected at x = l. The
reflected wave propagates in the negative x-direction with a smaller amplitude (i.e.

Fig. 4 Wave reflections on the inner and/or outer lateral surface for a M = 1, b M = 2, c M = 3,
and d M → ∞. Transverse waves travel in the positive and negative x-directions, with reduced wave
amplitude after each reflection. The size of each arrow is indicative of the wave amplitude, and the plus
signs graphically represent wave superposition
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R2,o · a and R2,i · a), and no wave reflection is assumed at x = 0. Under this scenario,
Eqs. (1) and (2) reduce to

ro(x, t) = a Re
{
exp (−iωt)

[
exp(ikx) + R2,o exp(−ikx + 2ikl)

]}+ bo (3)

ri (x, t) = a Re
{
exp (−iωt)

[
exp(ikx) + R2,i exp(−ikx + 2ikl)

]}+ bi . (4)

For M = 2, the wave reflects once at x = 0 and twice at x = l, and the annular
deformation consisting of the base forward-propagatingwave superimposedwith three
reflected waves as shown in Fig. 4b. Finally, one can consider an infinite number of
reflections (M → ∞) as the waves bounce between x = 0 and x = l (Fig. 4d), and
thus Eqs. (1) and (2) become

ro(x, t) = a Re

{
1

1 − R2,oR1,o exp (2ikl)
exp (−iωt)

× [exp(ikx) + R2,o exp(−ikx + 2ikl)
] }+ bo, (5)

ri (x, t) = a Re

{
1

1 − R2,i R1,i exp (2ikl)
exp (−iωt)

× [exp(ikx) + R2,i exp(−ikx + 2ikl)
] }+ bi . (6)

The reflection coefficients are independent non-dimensional parameters. Their values
depend on the local wave medium discontinuity due to changes in mechanical and/or
geometric properties. When a reflection coefficient is positive, the reflected wave is
in phase with the incident wave. On the other hand, a negative reflection coefficient
indicates that the reflected wave is 180 degrees out of phase from the incident wave
(Elmore and Heald 1969). The arterial stiffness increases longitudinally towards cap-
illaries (Hughes et al. 2014). In wave physics, a wave traveling from a less stiff into a
stiffer medium results in a negative reflection coefficient at the junction point. There-
fore, we enforce the conditions that R1,o, R1,i > 0 and R2,o, R2,i < 0, where we
assume that the arterial segment bifurcates into smaller arterioles at x = l.

2.3 Control volume analysis

Themost significant advantage of using a control volume analysis is that it can provide
the overall flow direction and an estimated magnitude of flow rate within a fraction of
the computational time needed to numerically solve theNavier–Stokes equations. This
provides us with a convenient tool to assess the required boundary wave conditions
needed to generate reverse transport. In our results section, we will show that the
control volume analysis qualitatively agrees with the computation-intensive Navier–
Stokes equations solution.

We define the control volume as the periodically deforming annulus with two open
control surfaces as illustrated in Fig. 2. For an incompressible and homogenous fluid,
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the conservation of mass and momentum equations for a control volume reduces to

ρ
dV

dt
= ρū1A1 − ρū2A2 (7)

d

dt
(ρP) = ρβ1ū

2
1A1 − ρβ2ū

2
2A2 (8)

where V is the volume of the annular segment, ū is the average cross-sectional fluid
velocity in the x-direction, β is the momentum-flux correction factor, ρ is the fluid
density, and ρP is the total x-direction linear momentum inside the control volume.
For our annulus with radii 0.33 ≤ ri/bo ≤ 0.83 and 0.83 ≤ ro/bo ≤ 1.17, it is
found that β1,2 = 1.20± 0.01 (Appendix 1). Thus, during all control volume analysis
computations, we set β1 = β2 = 1.20. Given that ū1 must remain real, periodic,
and finite, a series of binomial expansion of Eqs. (7) and (8) leads to an approximate
formula for the overall volume of fluid transported per wave period (Appendix 2),

QCV ≈
∫ τ

0
dV
dt

1
(1+α1/2)

dt

1 − 1
2β1

∫ τ
0 A1(t)dt

∫ τ

0 A1α1/2dt
(9)

where τ is the wave period. The calculations of V , A1, and α were carried out using
the prescribed boundary waves given in Eqs. (3) to (6) while numerical integration of
Eq. (9) was performed using the quadrature method with a tolerance of 10−6.

2.4 Numerical solutions of the Navier–Stokes equations for laminar,
incompressible flow

In addition to the control volume analysis, the flow magnitude can also be obtained
through solutions to the coupled continuity and Navier–Stokes equations,

∇ · u = 0 (10)

ρ
Du
Dt

= −∇ p + μ∇2u (11)

where u is the flow velocity field, μ is the fluid viscosity, and the effect of gravity is
assumed negligible. We used the finite volume method-based ANSYS FLUENT 15.0
to solve the Navier–Stokes and the continuity equations and obtained instantaneous
velocity fields inside the annulus during periodic volume deformation. The governing
equations were solved iteratively until the scaled residuals of continuity and velocity
became less than 10−12 and 10−15, respectively. A no-slip boundary condition was
imposed on the inner and outer lateral surfaces while they deform according to Eqs.
(3) to (6). Pressures at the annular openings were set to zero and the fluid was initially
at rest.

To accommodate the deforming annulus we used the diffusion-based smoothing
method to update the finite volume mesh during each time step. In ANSYS FLUENT,
this method moves mesh nodes in response to the displacement of the boundaries by
solving the diffusion equation for mesh velocities. The velocity at a boundary node
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is considered as a Dirichlet boundary condition. The diffusion equation is discretized
using the standard finite volume method and solved iteratively using the algebraic
multigrid solver. By default, the number of iterations and relative residual tolerance
for solving the mesh motion equation are 20 and 10−4, respectively. Other moving
mesh algorithms such as dynamic layering and remeshing methods were considered
but ultimately not adopted. Dynamic layering allows the addition or removal of cell
layers adjacent to themoving boundary based on its height.We did not choose dynamic
layering because our prescribed deformation varies in the axial direction, and thus the
adjacent cell height layer is not uniformand compromises themesh quality. Remeshing
methods require a triangular mesh, which we found to provide poorer convergence
than a structured grid with quadrilateral elements.

The simulations were performed for a time duration of eight wave periods. The
overall fluid volume transported over a wave period, QNS, is obtained by

QNS ≡
t+τ∫
t

⎧⎪⎨
⎪⎩

ro(t ′)∫
ri (t ′)

[
u1(r, t

′) · x̂] 2πrdr
⎫⎪⎬
⎪⎭dt ′ (12)

All simulations show QNS during the seventh and the eighth wave periods differed
by less than 0.01%, which suggests that during the eighth period the annular flow had
reached a periodic state.

Our mesh consisted of 42,021 nodes and we chose a time step size of �t = 0.01 s.
The mesh sensitivity of the simulations was determined by varying the number of
nodes in the annulus and comparing QNS. For the same annular volume, the number
of nodes was varied from 11,021 to 164,041 while maintaining �t = 0.01 s. Within
this range of grid resolution, QNS was found to change by less than 0.2%, which
indicates that the lower mesh density was sufficient. The time step size sensitivity
was evaluated by varying �t between 0.02 and 0.005 s and comparing QNS while
keeping the number of nodes fixed to 42,021. We confirmed that QNS changes by
less than 0.50%, which suggests that a relatively larger time step size can be used for
computational efficiency.

3 Results and discussion

3.1 Non-dimensional parameters

The characteristic lengths of the simulations are bo = 40 μm (radial) and l = 2
mm (longitudinal), while the characteristic time is the wave period, τ = 1 s, which
is based on the human heart rate. Non-dimensional independent parameters ã, k̃,
b̃i , and ω̃ are referred to as the amplitude-to-radius ratio, the non-dimensional wave
number, the radius ratio, and the non-dimensional wave frequency, respectively. ã ≡
a/bo ∼ 0.1 is based on the arterial wave amplitude (Yang et al. 1991) and radius
(Li 2004) measurements reported in the literature. Here, k̃ ≡ kl ∼ 0.01 and ∼ 0.001
are for the arteries and the arterioles, respectively, based on the measured pulse wave
speed (Li 2004; Knopf et al. 1995) and blood vessel length (Li 2004; Kamath 1981).
b̃i ≡ bi/bo is between 0.6 and 0.8 based on reported outer mean radius and wall
thickness measurements (Li 2004; Krings et al. 2011) while ω̃ ≡ τω = 2π. The non-
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Fig. 5 The fluid volume transported per wave period, Q̃, versus R2,i withM = 1 and for different values of
R2,o. Q̃CV is obtained from the control volume analysis while Q̃NS is obtained from the numerical solutions
of the Navier–Stokes equations. All data have the same parameter values of ã = 1/12, k̃ = π /500, and
b̃i = 2/3

dimensional fluid volume transported per wave period is Q̃ ≡ Q/b2ol. The Reynolds
number is much less than 1 for all cases, rendering the flow laminar throughout.

3.2 Wave reflections on the inner and outer lateral surfaces

Wave reflections may occur on both the inner and outer lateral surfaces of the ABM,
and both scenarios are accounted for in our model. Figure 5 shows the net flow Q̃
for varying R2,o and R2,i . A positive value of Q̃ indicates a net forward flow (in the
same direction as the blood flow), while a negative Q̃ represents an induced reverse
flow in the annulus. Our results show that the reflection coefficients on the inner
and outer lateral surface must be mismatched in order to obtain a significant reverse
flow. For example, to create a large net reverse flow, R2,o should be close to −1
and R2,i should be close to 0 (or vice versa). In other words, to drive flow in the
reverse direction, the boundary deformationsmust be incoherent on the inner and outer
surfaces. If the boundary deformations are similar (i.e. when the reflection coefficients
are closely matched), the flow is driven in the forward direction or is completely
inhibited. Physiologically, mismatched reflection coefficients are expected given the
variation in material properties on the inner and outer lateral surfaces of the arterial
lumen. To highlight the importance of the key parameters (e.g. R1,o, R2,o, k̃, b̃i ) on
Q̃, in the following sections we mainly focus on the case where a large reverse flow
is possible; i.e. when R2,i 
= R2,o.
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3.3 The effects of R1,o, R2,o, and k̃ on the flow

Our results indicate that the reflection coefficients, R1,o and R2,o, strongly influence
the overall transport direction, while the transport magnitude depends on k̃. Figure 6
shows the fluid volume transported per wave period, Q̃, for annular deformation under
M = 1 (Eqs. (3) and (4)). Here, our computational results predict that when k̃ << 1,
reverse transport occurs only for R2,o < −0.33. This finding can be understood by
considering our preferential flow theory (Fig. 3). In Fig. 7, we plot dṼ /dt̃ verses t̃
along with α verses t̃ ≡ t/τ where Ṽ ≡ V/b2ol. The regions that are shaded represent
the time duration when dṼ /dt̃ > 0 and α > 1 (Fig. 3b) or dṼ /dt̃ < 0 and α < 1
(Fig. 3d). These are the conditions that are favorable to reverse fluid flow. It can be
seen that the larger the value of |R2,o|, the longer these favorable conditions last, and
thus the greater the reverse transport. For example, at R2,o = 0 (Fig. 7a), the favorable
conditions never occur, and thus no reverse transport is observed. At R2,o = −0.4
(Fig. 7b), the favorable annular deformation conditions occur 72.3%of the time during
a wave period, resulting in an overall reverse transport. For R2,o = −0.8 (Fig. 7c), the
favorable conditions occur 99.8% in each wave period, thus leading to a very strong
reverse flow in the annulus (i.e. for this case, the reflection coefficients are highly
mismatched).

From a physical point of view, |R2,o| represents the relative amplitude or strength of
the reflectedwave as compared to the forward propagatingwave.At−0.33 ≤ R2,o < 0
the reflected wave is simply too weak to overpower the forward moving wave to create
a reverse flow in the annulus. It is also interesting to note that a reverse flow does not
require the reflected wave to be as strong as the forward moving wave. For example,
a reflected wave that has only half the amplitude as the forward wave (R2,o = −0.5)
is already capable of inducing a reverse flow in the annulus. Of course, the larger the
value of |R2,o|, the stronger the reverse transport.

The value of the non-dimensional wave number k̃ is found to affect the transport
magnitude, but not direction.Decreasing k̃ fromπ/250 toπ/1000 leads to a decrease in
the flow magnitude. When k̃ becomes smaller, the annulus occupies a smaller fraction
of the wavelength at any instant of time, and consequently, the difference between A1
and A2 also becomes smaller. In other words, one expects that α is a monotonically
increasing function of k̃ and α(t, k̃ → 0) → 1. Since the magnitude of transport is
related to the value of α integrated over time, a decrease in k̃ lowers the overall flow
magnitude (Fig. 6).

We next turn our attention to the case where the traveling waves can reflect at both
x = 0 and x = l (i.e. M → ∞). The key difference here is that the value of R1,o
also determines the transport magnitude. In Fig. 8, we plot R1,o verses Q̃ for different
values of R2,o. As before, when |R2,o| increases, the magnitude of the overall reverse
flow increases. Our model also indicates that once |R2,o| determines the transport
direction, R1,o can change the flow magnitude but cannot influence the flow direction.
Our computation shows that |R2,o| > 0.5 is needed for peri-arterial drainage out of
the brain regardless of the value of |R1,o|.
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Fig. 6 The fluid volume transported per wave period, Q̃, versus R2,o for M = 1. Q̃CV is obtained from
the control volume analysis while Q̃NS is obtained from the numerical solutions of the Navier–Stokes
equations. All data have the same parameter values of R2,i = 0, ã = 1/6, and b̃i = 2/3

3.4 Transport implications for an aging brain

An aging brain is characterized by the thickening of the ABM (Farkas and Luiten
2001) and stiffening of the arterial wall (Nichols 2005). Here, we interpret the ABM
thickening as increasing the gap size, h̃, of the annulus where h̃ = 1 − b̃i , which is
manifested through decreasing the value of b̃i . The arterial stiffening is interpreted as
the vesselwall becoming less elastic, resulting in a smaller travelingwave amplitude, ã.
Given that multiple wave reflections are found to not impact the overall fluid transport
direction, here we first focus on computational cases where M = 1 to obtain some
physical understanding.

In Fig. 9, we plot Q̃ versus R2,o for three different scenarios of the aging brain.
In Fig. 9a, we observe that Q̃ shifts upward when b̃i decreases. That is, an increase
in the annular gap size h̃ causes the overall fluid transport to become more positive:
a flow that is originally in the reverse direction becomes weaker in magnitude, while
an originally forward flow becomes stronger. This can be explained by comparing
Fig. 10a with Fig. 7c, both of which are plotted with identical parameter values except
b̃i . It can be observed that when b̃i changes from 2/3 to 1/2, the duration of favorable
conditions for reverseflow (shaded regions) reduced in eachwaveperiod, thus reducing
the magnitude of the reverse transport. Furthermore, under certain range of R2,o the
flow can even change direction. For example in Fig. 9a, at R2,o = −0.4, transport
in the annulus goes from reverse for b̃i = 2/3 to forward for b̃i = 1/2. Again, our
understanding of the duration of favorable conditions for reverse flow provides the
physical reasoning behind this observation. For b̃i = 2/3 (Fig. 7b), the favorable
conditions are seen to last much longer per wave period than the case of b̃i = 1/2
(Fig. 10b). Overall, this suggests a potential mechanism to explain how aging arteries
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Fig. 7 dṼ /dt̃ verses t̃ and α verses t̃ with parameter values of M = 1, R2,i = 0, ã = 1/6, b̃i = 2/3, and
k̃ = π/500. a R2,o = 0; b R2,o = −0.4; c R2,o = −0.8. The shaded regions indicate the time intervals
of favorable conditions for reverse flow

123



M. Coloma et al.

Fig. 8 Q̃ versus R1,o as M → ∞. The curves represent different values of R2,o. All data have the same
parameter values of ã = 1/6, b̃i = 2/3, k̃ = π/500, and R1,i = R2,i = 0

with an increase in the ABM gap thickness (i.e. thickening) can result in reduced
reverse transport in the ABM.

In Fig. 9b we investigate the changes in Q̃ when the wave amplitude, ã, is reduced.
Here, it is observed that when ã decreases, the magnitude of fluid volume transported,∣∣∣Q̃∣∣∣, also decreases. This is expected because the boundary wave provides the force

that drives the flow, for both the forward and reverse directions. Thus, a smaller ã is
equivalent to a weaker driving force, which in turn decreases the flow magnitude. For
an aging brain, this implies that when the arterial wall stiffens, the wave amplitude
of the cardiac pulsation is weaker and reduces the amount of solutes that can be
transported through the ABM.

In Fig. 9c both thickening and stiffening of theABMare considered simultaneously.
The combinatorial aging effect indicates a dramatic decrease in the net flowmagnitude,
especially for the range of R2,o where reverse transport occurs. We also analyzed the
effects of decreasing b̃i for R1,o > 0 and M → ∞, as shown in Fig. 11. The results
are similar to those seen in Fig. 9a; in particular, the overall reverse flow decreases
with decreasing b̃i .

3.5 Statements on the control volume analysis

Figures 5, 6, 8, 9, and 11 show that Q̃CV and Q̃NS have the same order ofmagnitude and
follow the same trend. The differences between Q̃CV and Q̃NS are mainly attributed to
the assumptions wemake in the control volume analysis. First, we considered only the
two leading order terms in the binomial expansions sincewe expect the contributions of
the subsequent terms to diminish. Secondly, we assumed the spatially-averaged veloc-
ity, over one wavelength, is approximately equivalent to the time-averaged velocity at
x = 0 over one wave period.
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Fig. 9 Q̃ versus R2,o under three different aging conditions. All computation are conducted under M = 1,
R2,i = 0, and k̃ = π/500. a Changing the ABM thickness, b̃i , while maintaining the ABM stiffness, ã; b
changing the value of ã while keeping b̃i constant; c simultaneously decreasing b̃i and ã
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Fig. 10 dṼ /dt̃ verses t̃ and α verses t̃ with M = 1, R2,i = 0, ã = 1/6, b̃i = 1/2, and k̃ = π/500. a
R2,o = −0.8; b R2,o = −0.4. The shaded regions indicate the time intervals of favorable conditions for
reverse flow

Nevertheless, the control volume approach yields good prediction of flow direc-
tion while needing only a very small fraction of the computational time for obtaining
numerical solutions of the Navier–Stokes equations.With the computational hardware
available to us, the amount of time needed to calculate Q̃CV for M = 1, R2,i = 0,
R2,o = −0.8, ã = 1/6, b̃i = 2/3, and k̃ = π/500 was approximately 0.1 seconds,
while the amount of time to calculate Q̃NS using the same parameter values is approx-
imately 4.5h. Thus, the control volume analysis offers a tool that allows a researcher
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to rapidly survey the parameter space to elucidate the conditions necessary for reverse
flow.

4 Concluding remark

To date, the exact mechanisms of how A β is cleared from a healthy brain and is accu-
mulated in an aging brain remain elusive. Current opinions in the medical field suggest
that an understanding ofA β clearance not only offers insights into the development and
progression of Alzheimer’s disease, but also may suggest potential treatment options
to slow down or reverse its adverse effects. In this paper, we report on a boundary
wave-driven hydrodynamic mechanism that is a potential candidate for explaining
A β clearance in the ABM as reported in literature. What makes this mechanism a
good candidate is that we are able to incorporate critical physiological conditions into
our model and obtain transport results that are qualitatively in agreement with clinical
and experimental observations reported in literature.

Through our numerical studies, we found that forward-propagating and reflected
boundary waves can influence the direction of fluid transport in an ABM that is mod-
eled as an annulus. This is despite the fact that the blood flow, due to cardiac pulsations,
propagates only in the forward direction and is the driving force of transport in the
ABM. Several parameters associated with the boundary waves and the annular geome-
try are found to be critically important in determining the transport direction, including
the change of arterial stiffness at arterial bifurcation sites (manifested through thewave
reflection coefficients), basement membrane thickness, wavelength, and ABM stiff-
ness (manifested through wave amplitude). We also found that slight changes in these
parameters for an aging brain can lead to dramatic changes in transport direction and

Fig. 11 Q̃ versus R2,o under different values of the ABM thickness, b̃i , while maintaining the ABM
stiffness ã = 1/6. All computation are conducted under M → ∞, R1,o = 0.4, R1,i = R2,i = 0 and
k̃ = π/500
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magnitude. This offers a potential explanation of the biomechanical causes of A β

clearance failure in the ABM found in Alzheimer’s disease patients.
Finally, the preferential transport theory presented in this manuscript does not

presume contraction of the smooth muscle cells as the main boundary deformation
mechanism. Rather, the arterial wall deformation is assumed to be purely linked to the
cardiac pulsations. Iliff et al. (2013) report on wave pulsations along brain penetrating
arteries/arterioles (at length scales similar to our study). While it is likely that cardiac
pulsations diminish at the pre-capillary level, cardiac pulsations in small arteries/large
arterioles exist and can still serve as the driving force for a reverse flow in the ABM
(i.e. to satisfy continuity in one continuous flow conduit). Therefore our preferential
transport theory does not require cardiac pulsations at the capillary and/or pre-capillary
arteriole level. To drive flow, cardiac pulsations are only necessary at the level of the
small arteries/large arterioles.
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5 Appendix 1: Momentum correction factor for an annulus

The dimensionless momentum-flux correction factor at a control surface k is

βk = 1

Ak

∫
Ak

(
uk
ūk

)2

d Ak (13)

where uk is the velocity profile at the control surface. βk = 1 represents a uniform
flow profile while a parabolic flow profile leads to βk > 1. The velocity profile
for a steady, incompressible, laminar, unidirectional flow in an annulus with no-slip
boundary conditions is

uk(r) = r2i,k − r2o,k
4μ

dp

dx

⎛
⎝ r2 − r2o,k
r2i,k − r2o,k

−
ln
(

r
ro,k

)
ln
(
ri,k
ro,k

)
⎞
⎠ (14)

where dp/dx is the local pressure gradient and μ is the fluid viscosity, and

ūk = − 1

2μ

dp

dx

ro,k∫
ri,k

⎛
⎝ r2 − r2o,k
r2i,k − r2o,k

−
ln
(

r
ro,k

)
ln
(
ri,k
ro,k

)
⎞
⎠rdr

= − 1

8μ

dp

dx

⎛
⎝r2i,k + r2o,k − r2i,k − r2o,k

ln
(
ri,k
ro,k

)
⎞
⎠ . (15)
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6 Appendix 2: Derivation of the control volume flow rate formula

Equation (8) can be re-written in terms of ū2 and α,

ū2 = ±ū1

(
1

α

) 1
2
(
1 − 1

ū21β1A1

dP

dt

) 1
2

, (16)

where ū2 must remain real at all times and requires dP/dt < ū21β1A1. The periodic
nature of the rate of change of momentum in the control volume allows us to infer that
|dP/dt | < ū21β1A1. We thus employ a binomial expansion of Eq. (16),

ū2 = ±ū1

(
1

α

)1/2
⎡
⎣1 − 1

2

(
1

ū21β1A1

dP

dt

)
− 1

8

(
1

ū21β1A1

dP

dt

)2

+ · · ·
⎤
⎦ . (17)

Since at any given instant of time a velocity must be unique, we determine the sign
in Eq. (17) by considering the leading order term and substitute it into Eq. (7), which
leads to

ū1 = dV

dt

1

A1

1

1 ∓ α1/2 . (18)

The minus sign solution in Eq. (18) is physically unreasonable because during each
deformation cycle, there must exist instances when α = 1. Thus, at those instances

lim
α=1

1

1 − α1/2 → ∞

which leads to singularity for ū1. This indicates that the only plausible sign for Eq.
(17) must be negative and

ū2 = −ū1

(
1

α

)1/2
⎡
⎣1 − 1

2

(
1

ū21β1A1

dP

dt

)
− 1

8

(
1

ū21β1A1

dP

dt

)2

+ · · ·
⎤
⎦ . (19)

When the two leading order terms in Eq. (19) are considered and substituted into Eq.
(7), it yields a quadratic equation in terms of ū1,

(
1 + α1/2

)
A1ū

2
1 −

(
dV

dt

)
ū1 − 1

2β1
α1/2 dP

dt
= 0, (20)

whose solution is

ū1 =
( dV
dt

)±
√( dV

dt

)2 − 2 A1
β1

dP
dt

(
1 + α1/2

)
2
(
1 + α1/2

)
A1

. (21)
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Again, ū1 must remain real at all times, and given the periodic nature of dP/dt, we
can infer that ∣∣∣∣∣2 A1

β1

(
dV

dt

)−2 dP

dt

(
1 + α1/2

)∣∣∣∣∣ ≤ 1. (22)

Once again by invoking the binomial series expansion of the square root term in
Eq. (21) and keeping the two leading order terms, we get

ū1 ≈
( dV
dt

)± ( dV
dt

) [
1 + A1

β1

dP
dt

( dV
dt

)−2 (
α + α1/2

)]
2
(
1 + α1/2

)
A1

. (23)

Numerical evaluation of Eq. (23) requires us to obtain an approximate expression
for dP/dt. We define a spatially averaged velocity in the x-direction as uavg,S =
(1/V )

∫ ∫ ∫
(u · x̂)dV = P/V where u is velocity field vector and x̂ is the unit

direction vector pointing in the axial direction. Since the flow is periodic, a velocity
averaged over a space of one wavelength is approximately equal to a timed-averaged
velocity uavg,T at A1 over one period, or

uavg,S ≈ uavg,T = 1

τ

∫ τ

0
ū1 (t) dt = QCV∫ τ

0 A1 (t) dt
. (24)

Given that uavg,T is not a function of time,

dP

dt
= d

dt

(
uavg,SV

) ≈ d

dt

(
uavg,T V

) = QCV∫ τ

0 A1 (t) dt

dV

dt
. (25)

Substituting Eq. (25) into Eq. (23) yields

QCV ≈
∫ τ

0

dV

dt

1

2
(
1 + α1/2

)dt
±
∫ τ

0

1

2
(
1 + α1/2

)
[
dV

dt
+ A1

β1

QCV∫ τ

0 A1 (t) dt

(
α + α1/2

)]
dt . (26)

Equation (26) shows two possible solutions for QCV, which also must be unique. We
first consider Eq. (26) with the negative sign, which yields

QCV = −
∫ τ

0

[
A1

2β1
(
1 + α1/2

) QCV
(
α + α1/2

)
∫ τ

0 A1 (t) dt

]
dt

= − QCV

2β1
∫ τ

0 A1 (t) dt

∫ τ

0
A1α

1/2dt . (27)

Rearranging Eq. (27) leads to QCV = 0, regardless of the annular deformation,
which is not physically plausible given that a periodically deforming control volume
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due to traveling boundary waves should result in non-zero overall flow. Choosing the
positive sign in Eq. (26) thus leads to Eq. (7).
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