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Abstract  

Aims: Amyloid beta (Aβ) accumulation in the walls of leptomeningeal arteries as cerebral amyloid 

angiopathy (CAA) is a major feature of Alzheimer’s disease. In this study, we used global 

quantitative proteomic analysis to examine the hypothesis that the leptomeningeal arteries derived 

from patients with CAA have a distinct endophenotypic profile compared to those from young and 

elderly controls.  

Methods: Freshly dissected leptomeningeal arteries from the Newcastle Brain Tissue Resource and 

Edinburgh Sudden Death Brain Bank from seven elderly (82.9±7.5 years) females with severe 

capillary and arterial CAA, as well as seven elderly (88.3±8.6 years) and five young (45.4±3.9 years) 

females without CAA were used in this study. Arteries from four patients with CAA, two young and 

two elderly controls were individually analysed using quantitative proteomics. Key proteomic 

findings were then validated using immunohistochemistry. 

Results: Bioinformatics interpretation of the results showed a significant enrichment of the immune 

response/classical complement and extracellular matrix remodelling pathways (p<0.05) in arteries 

affected by CAA vs. those from young and elderly controls. Clusterin (Apolipoprotein J) and tissue 

inhibitor of metalloproteinases-3 (TIMP3), validated using immunohistochemistry, were shown to co-

localize with Aβ and to be upregulated in leptomeningeal arteries from CAA patients compared to 
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young and elderly controls. Conclusions: Global proteomic profiling of brain leptomeningeal arteries 

revealed that clusterin and TIMP3 increase in leptomeningeal arteries affected by CAA. We propose 

that clusterin and TIMP3 could facilitate perivascular clearance and may serve as novel candidate 

therapeutic targets for cerebral amyloid angiopathy. 

Abbreviations: Aβ (amyloid beta); CAA (cerebral amyloid angiopathy); TIMP3 (tissue inhibitor of 

metalloproteinases-3) 

 

Introduction 

 The deposition of amyloid-β (Aβ) peptides in the walls of cerebral arteries as cerebral 

amyloid angiopathy (CAA) is a major feature of Alzheimer’s disease and may contribute to cognitive 

decline [1, 2]. CAA predominantly affects the leptomeningeal and cortical arteries especially in the 

occipital lobe, while capillaries are less frequently and veins rarely involved [3-5]. In the majority of 

cases there is no overproduction of Aβ in the vessel wall, suggesting that the deposition of Aβ in the 

walls of cerebral arteries is a result of a failure of elimination of neuronally derived Aβ [6]. Increasing 

age and possession of at least one apolipoprotein ε4 (APOE4) allele are risk factors for CAA and both 

have been suggested to impair cerebral Aβ clearance systems, thereby reducing Aβ elimination from 

the brain [7-10]. We have demonstrated that Aβ and other solutes are eliminated along the basement 

membranes of capillaries and arteries, effectively the lymphatic drainage of the brain [11]. 

Experimental work involving intraparenchymal injections of tracers demonstrated that the 

biochemical structure and morphology of the basement membranes of capillaries and arteries change 

with age and with possession of APOE4 genotype, resulting in failure of efficient clearance of Aβ [12-

14]. The exact targets for the facilitation of perivascular clearance of Aβ are not clear.  

 Proteomics allows the in-depth and global assessment of gene products at the protein level as 

they occur in a variety of biological specimens, including cell lines, tissue, blood and proximal fluids. 

The advanced use of liquid chromatography combined with mass spectrometry permits the 

identification of thousands of proteins with ultra-high precision and sensitivity, not available by any 
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other analytical approach. Using stable isotope isobaric reagents allow such proteomes to be profiled 

in parallel across multiple biological or clinical states under identical analytical conditions, a feature 

referred to as the multiplex advantage [15-23] For example, such a strategy allows the comparison of 

a given in vitro or in vivo model under a given homeostatic state (i.e. physiological condition) relative 

to a perturbation state (i.e. pathological condition or exposure to a stimulus) under exactly the same 

experimental conditions.  

 This study employed isobaric quantitative proteomic analysis of fresh frozen human 

leptomeningeal arteries from young and elderly subjects and patients with CAA, to test the hypothesis 

that leptomeningeal arteries derived from patients with CAA have a unique endophenotypic profile 

compared to those from young and elderly controls.  

 

Materials and methods  

Isolation of human leptomeningeal arteries 

 Human fresh frozen post-mortem leptomeningeal arteries from the Newcastle Brain Tissue 

Resource and MRC Sudden Death Brain & Tissue Bank (Edinburgh) were used for this study. CAA 

cases were diagnosed post-mortem by JA, according to published criteria including the neuritic Braak 

stages [24], Thal amyloid phases [25], CERAD scores [26], NIA-AA scores [27] and McKeith criteria 

[28] and showed varying degrees of Alzheimer's disease pathology. For CAA we used a recently 

developed staging system, which assesses meningeal and parenchymal CAA separately and also 

scores capillary CAA [2, 29]. All CAA cases had severe CAA as they showed widespread 

circumferential Aβ in meningeal and cortical arterial vessels as well as Aβ depositions in capillary 

walls. None of the cases was diagnosed with CAA during their lifetime. The cases from the MRC 

Sudden Death Brain & Tissue Bank (Edinburgh) had no neurological disease during life and no 

significant neuropathological changes post mortem. We excluded cases with arteriolosclerosis/ 

lipohyalinosis from this cohort.  Samples were collected and prepared in accordance with the National 

Research Ethics Service approved protocols. Leptomeningeal arteries in the occipital regions were 
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removed from the frozen coronal slices from brains of young females (45.4±3.9 years; n=5), elderly 

females without CAA (88.3±8.6 years; n=7) and females with severe CAA (82.6±7.5 years; n=7) 

(Table 1). Only female subjects were included in the present study as it has been shown that sex-

dependent differences exist in cerebral amyloid angiopathy [30-32]. The frozen coronal slices were 

placed at -200C overnight to acclimatise from the -700C storage prior to dissection in a cold cabinet at 

-120C. Arteries were identified based on their morphology of a vessel and they were distinguished 

from veins by the thicker wall and leptomeningeal sheet as they penetrate the cortex. The abundant 

presence of vascular smooth muscle actin confirmed they were arteries. Selected vessels were eased 

with a micro-scalpel from the meningeal surface of the gyri and sulci, removed and placed in pre-

cooled tubes to avoid thawing. These specimens were then snap frozen at -800C. 

 

Quantitative proteomic analysis on human leptomeningeal arteries 

 For the proteomic analysis, samples from two young and two elderly subjects and four 

patients with CAA were randomly selected from the cohort (Table 1). The justification for this 

number of CAA cases was to compensate for their innate tissue heterogeneity and to ensure a 

statistical power of over 0.7, factoring in a representative 30% measurement error and a fold change > 

1.5 between replicate observations, as reported in a recent simulation study [33]. Samples were 

dissolved in dissolution buffer (0.5 M triethylammonium bicarbonate / 0.05% sodium dodecyl 

sulfate), homogenized using the FastPrep system (Savant Bio, Cedex, Fr) and then subjected to pulsed 

probe sonication (Misonix, Farmingdale, NY, USA). Lysates were centrifuged (16,000 g, 10 min, 

40C) and supernatants were measured for protein content using the Direct DetectTM Spectroscopy 

system (Merck Millipore, Darmstadt, Germany) according to the manufacturer’s instructions. From 

each lysate volume (adjusted to the highest volume of 40 μL) containing 100μg final protein content 

was subjected to reduction, alkylation, trypsin proteolysis and eight-plex isobaric tag for relative and 

absolute quantitation (iTRAQ) labeling per supplier’s specifications (ABSciex, San Hose, CA, USA). 

Labelled peptides were pooled and fractionated with high-PH reverse phase (RP) chromatography 
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using the Waters, XBridge C8 column (150 x 3 mm, 3.5 μm particle) with the Shimadzu LC-20AD 

HPLC (Shimadzu, Kyoto, Japan). Each resulting fraction was LC-MS analysed with low-pH RP 

capillary chromatography (PepMap C18, 50μm ID x 50cm L, 100 Å pore, 3.5μm particle) and 

nanospray ionization FT-MS (Ultimate 3000 UHPLC - LTQ-Velos Pro Orbitrap Elite, Thermo 

Scientific, Bremen, DE) as reported previously [19, 20, 23] (Figure 1A).  

 Unprocessed raw files were submitted to Proteome Discoverer 1.4 for target decoy searching 

with SequestHT for tryptic peptides as reported by the authors [19, 20, 23]. Quantification ratios were 

normalized on the median value and log2 transformed. A protein was considered modulated in 

leptomeningeal arteries from elderly subjects vs. young controls or those affected by CAA type 1 

relative to these from young and elderly controls when its log2ratio was above or below ± 1 Standard 

Deviation across all analysed samples per category as reported previously [23].  

 Hierarchical clustering analysis visualized in heatmap format was generated using Gene 

Cluster (version 3.0) and Java Treeview (version 1.1.6r4). MetaCore (GeneGo, St. Joseph, MI, USA) 

and DAVID (http://david.abcc.ncifcrf.gov) were applied to identify prebuilt processed networks and 

gene ontology terms over-represented in the modulated proteome. False discovery rate (FDR) and 

Fisher’s exact corrected p-values ≤ 0.05 were considered significant.                        

 

Immunohistochemistry   

 The immunochemistry validation of key proteomic findings was performed in all 19 subjects 

(young female controls: n=5, elderly female controls: n=7, females with CAA type 1: n=7). Three 

sections of occipital cortex from each of the cases were immunostained. After dewaxing in xylene and 

rehydration through graded alcohols, antigen retrieval was performed by immersing slides in citrate 

buffer, microwaving on medium power for 25 mins and subsequently cooling.  This was followed by 

incubation in pepsin for 5 mins (1mg/ml 0.2M HCl).  The tissue was blocked in 3% H2O2 and 15% 

goat serum. Occipital cortex from each of the cases was incubated in clusterin, (Abcam, ab42673, 

rabbit polyclonal, dilution 1:500), or TIMP3 (Abcam, Ab93637, rabbit polyclonal, dilution 1:100) 
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overnight at 40C followed by biotinylated goat anti-rabbit antibodies (Vector BA1000 dilution 1:200) 

and ABC peroxidase enzyme complex, (Vector PK4000, dilution 1:500). Reaction was detected using 

diamino-benzidine with glucose oxidase enhancement. Images were captured an Olympus BX51 

microscope fitted with Olympus CC-12 colour microscope camera.  

 Double immunofluorescence was performed for Aβ and TIMP3. Prior to the antigen retrieval 

previously described, pre-treatment was required which consisted of 5 mins in formic acid at 370C. 

Tissue was blocked in 15% goat serum followed by incubation in primary antibodies overnight at 40C. 

Aβ was detected using mouse monoclonal anti-Aβ IgG2b Clone 4G8, antibody (BioLegend, 800701; 

dilution 1:100). The secondary antibody for Aβ was goat anti-mouse IgG2b, AlexaFluor 647 (A-

21242), and for TIMP 3 and clusterin was goat anti-rabbit IgG AlexaFluor 594, (A-27096). These 

were obtained from Thermo Fisher Scientific and diluted 1:200).  Images were captured and 

examined with a Leica SP8 confocal microscope. The specificity of the immunohistochemistry 

staining was confirmed by omitting the primary antibody. 

 

Results  

Quantitative proteomic analysis 

 The proteomic analysis resulted in the profiling of 5,957 proteins (peptide FDR confidence ≥ 

99%) (Supplementary Table 1). A total of 1,364 proteins were differentially expressed in arteries 

from elderly relative to young subjects (Supplementary Table 2), 280 in arteries from CAA cases 

relative to young controls (Supplementary Table 3) and another 983 in arteries from CAA cases 

relative to elderly controls (Supplementary Table 4). The hierarchical clustering analysis of 

differentially expressed proteins between groups revealed that leptomeningeal arteries derived from 

CAA patients compared to those from young and elderly controls had a distinct proteomic profile 

from arteries derived from elderly compared to young subjects (Figure 1B). 
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 In silico bioinformatics analysis showed that the immune response/classical complement 

pathway (p-value = 5.0E-11; 5.007E-2; 1.168E-10 in elderly vs young controls; CAA vs young 

controls; CAA vs elderly controls respectively) (Figure 2) and extracellular matrix remodelling (p-

value = 3.3E-8; 6.349E-6; 2.317E-8 in elderly vs young controls; CAA vs young controls; CAA vs 

elderly controls respectively) (Figure 3) were significantly over-represented processes. For both 

pathways, the expression levels of most proteins were found to decrease in arteries from elderly vs 

young controls whereas they increased in arteries from CAA patients compared to young and elderly 

controls. 

 The expression of clusterin (Apolipoprotein J) and tissue inhibitor of metalloproteinases 3 

(TIMP3) from the immune response/classical complement and the extracellular matrix remodelling 

pathways respectively, were upregulated in arteries from patients with CAA compared to both young 

and elderly controls [Clusterin: iTRAQ mean log2ratio (SD) = 2.30 (0.45) and 2.87 (0.44) in CAA vs. 

young and CAA vs. elderly controls respectively]  [TIMP3: iTRAQ mean log2ratio (SD) = 1.63 

(0.89) and 2.48 (0.90) in CAA vs. young and CAA vs. elderly controls respectively].  

 

Immunohistochemistry  

 Clusterin was found to co-localise with Aβ in the occipital cortex of CAA cases, but not in the 

young or elderly controls (Figure 4). The pattern of expression for the immunocytochemistry of 

TIMP3 was weak in arteries from young controls, increased in elderly controls and was strong in 

CAA patients (Figure 5). TIMP3 and clusterin were found to co-localise with Aβ in the 

leptomeningeal vessels of the occipital cortex from CAA cases (Figure 6).   
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Discussion 

 Our study showed that the global endophenotypic profile of leptomeningeal arteries from 

elderly female patients with severe CAA was different from that of age-matched and young controls. 

The immune response/classical complement and extracellular matrix remodelling pathways were 

significantly enriched in the differentially expressed proteome of arteries between patients with CAA 

compared to young and elderly controls. Most proteins participating in these pathways were 

upregulated in leptomeningeal arteries from patients with CAA compared to these from controls, 

possibly reflecting a pro-inflammatory response in arteries affected by CAA, which could have in turn 

triggered tissue remodelling processes. The inflammatory profile of CAA is well characterized [34, 

35] and previous studies have described an increased activation of the complement system in cerebral 

amyloid plaques as well as deposition of complement components in CAA affected cerebral arteries 

[36-38]. Extracellular matrix components can influence the deposition of Aβ thus contributing to 

Alzheimer’s disease progression [39, 40]. Conversely, Aβ accumulation damages the integrity of 

existing extracellular matrix, which affects brain microvascular functions during the early stages of 

Alzheimer’s disease [41-43].  

 The study results show that clusterin co-localizes with Aβ within the walls of leptomeningeal 

arteries and its expression levels increase in leptomeningeal arteries from patients with CAA 

compared to those from young and elderly controls. Clusterin (Apolipoprotein J, or ApoJ) is a 

disulfide linked heterodimeric glycoprotein that activates microglia, initiating an inflammatory 

cascade [44]. Genome-wide association studies of sporadic Alzheimer’s disease, in which Aβ 

accumulates both in cortical plaques and CAA, have highlighted the importance of common genetic 

variations in the gene encoding clusterin [45]. Experimental work suggests that clusterin regulates Aβ 

fibril formation [46] and plays a major role in the clearance of Aβ42-ApoJ complexes, via LRP2 [47-

49]. Although the predominant species of Aβ in CAA is Aβ40, with progressive failure of 

perivascular clearance of interstitial fluid, there is also accumulation of Aβ42 [50]. Clusterin appears 

to be sequestered with Aβ species in the vascular amyloid deposits in sporadic CAA, as well as in the 

white matter abnormalities in cerebral autosomal dominant arteriopathy with subcortical infarcts and 
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leukoencephalopathy (CADASIL) [51, 52]. A recent study found a significant positive correlation 

between clusterin concentration and regional levels of insoluble Aβ42 [53]. It is therefore possible 

that the upregulation of clusterin observed in the CAA arteries, is due to either entrapment of the Aβ-

ApoJ complex in the perivascular drainage pathways, or a compensatory upregulation of ApoJ to 

clear the excess Aβ42 that cannot be eliminated normally.  

 In this study we demonstrated that the expression of TIMP3 in the brain is restricted  

to the walls of leptomeningeal arteries and increases in CAA. Homeostasis of the extracellular matrix 

in the brain is maintained by the balanced action of matrix metalloproteinases (MMP) that degrade 

extracellular matrix and by tissue inhibitors of metalloproteinases (TIMP) proteins. Human TIMP3 is 

a 25kDa protein that contains disulfide bonds and is expressed in normal central nervous system [54]. 

In a study by Hoe et al. [55], TIMP3 expression was found to increase in human brains affected by 

Alzheimer’s disease (AD). Furthermore, this study showed that TIMP3 prevents α-cleavage of 

amyloid precursor protein (APP) whereas it promotes β-cleavage of APP thus contributing to elevated 

Aβ levels in AD. TIMP3 preserves the integrity of extracellular matrix in arteries as the absence of 

TIMP3 in knock-out mice results in pathological arterial vasodilation [56]. Our results showed that 

expression of TIMP3 in the brain is restricted to the walls of leptomeningeal, thus antagonistically 

targeting TIMP-3 could also facilitate perivascular drainage of Aβ. Examining this hypothesis was 

beyond the scope of the present study and constitutes a future objective. 

 In conclusion, this proteomic study demonstrates the activation of inflammatory and 

extracellular matrix remodelling pathways in human leptomeningeal arteries from CAA patients 

compared to these from cognitively normal young and elderly controls. Furthermore, we observed 

increased levels of clusterin and TIMP3 in leptomeningeal arteries from CAA patients compared to 

young and elderly controls and co-localization of these two proteins with Aβ in the occipital cortex of 

the CAA cases. Future work will test the hypothesis that clusterin and TIMP3 could facilitate 

perivascular clearance and represent novel therapeutic targets for cerebral amyloid angiopathy. 
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Figure Legends 

Figure 1. a. Experimental pipeline of proteomics experiment b. Heatmap of differentially expressed 

proteins in leptomeningeal arteries of elderly controls compared to young controls, CAA patients 

compared to young controls and CAA patients compared to elderly controls. 

 

Figure 2. The immune response/classical complement pathway was significantly enriched in the 

differentially expressed proteome of leptomeningeal arteries from elderly vs. young controls (p=5.0E-

11) (a), CAA patients compared to young controls (p-value = 5.007E-2) (b) and CAA patients 

compared to elderly controls (p-value = 1.168E-10) (c).  

 

Figure 3. The extracellular matrix remodelling pathway was significantly enriched in the 

differentially expressed proteome of leptomeningeal arteries from elderly compared to young controls 

(p-value = 3.3E-8) (a), CAA patients compared to young controls (p-value = 6.349E-6) (b) and CAA 

patients compared to elderly controls (p-value = 2.317E-8) (c). 

 

Figure 4. Immunohistochemistry of clusterin.  

DAB with haematoxylin counterstain in a) young, b) elderly control and c) CAA. The intensity of 

immunostaining of clusterin is increased in the leptomeningeal vessels present in the sulci in elderly 

control cases compared to young cases and in CAA compared to elderly control cases. 

Immunofluorescence for Aβ and clusterin in leptomeningeal arteries in CAA d-e). Aβ 

immunofluorescence (blue) in d) is present in the whole thickness of the arterial wall in a concentric 

manner; clusterin immunofluorescence (red) in e) is also present throughout the thickness of the 

arterial wall; colocalization (pink) of Aβ and clusterin occupies most of the thickness of the arterial 

walls in f).   
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Scale bars: (a-c) = 100μm / (d-f) = 50μm 

Figure 5. Immunohistochemistry of TIMP3 in leptomeningeal arteries.  

DAB with haematoxylin counterstain in a) young, b) elderly control and c) CAA. The intensity of 

immunostaining of TIMP3 is increased in the leptomeningeal vessels present in the sulci of elderly 

control cases compared to young and in CAA cases compared to elderly. Immunofluorescence for Aβ 

and TIMP3 in leptomeningeal arteries in CAA d-e). Aβ immunofluorescence (blue) in d) is present in 

the whole thickness of the arterial wall in a concentric manner; TIMP3 immunofluorescence (red) in 

e) is also present throughout the thickness of the arterial wall; colocalization (pink) of Aβ and TIMP3 

occupies most of the thickness of the arterial walls, especially concentrated in the tunica media, with 

less in the endothelium and outer layers of the wall (f).   

Scale bars: (a-c) = 100μm / (d-f) = 50μm 

Figure 6. Confocal microscopy images showing distribution of TIMP3 (blue) and Aβ (red) in 

leptomeningeal arteries from young, (a-c), elderly females (d-f) and patients with CAA (g-i). Co-

localization of Aβ and TIMP3 is observed in CAA, on transmission merged images (c-i). Images 

obtained with x20 objective. False colour applied to channels. 
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Table 1. Details of post mortem samples 

 

 

  

Sample ♯ Study group Age 
(y) 

Used in 
proteomic 
analysis 

Braak 
stage 

Thal amyloid 
phase 

Postmorte
m delay 
(hrs) 

Cause of death Duration of 
dementia 
(y) 

CAA 
inflammation/ 
vasculitis 

1 young control 51 Yes 0 Not applicable 81 Metastatic 
carcinoma 

0 Not applicable 

2 young control 46 Yes 0 Not applicable 49 Myocardial 
infarction; 
Coronary artery 
thrombosis; 
Coronary artery 
atherosclerosis 

0 Not applicable 

3 young control 45 No 0 Not applicable 93 Coronary artery 
atherosclerosis 

0 Not applicable 

4 young control 40 No 0 Not applicable 77 Bronchial 
asthma 

0 Not applicable 

5 young control 45 No 0 Not applicable 40 Suspension by 
ligature 

0 Not applicable 

6 elderly control 79 Yes IV 3 9 Old age, 
dementia with 
Parkinson’s 
disease 

9 mild, some 
vessels with 
perivascular 
infiltrate 

7 elderly control 88 Yes III 0 22 Aspiration 
pneumonia; 
total anterior 
circulation 
stroke 

Not 
available 

Not remarkable 

8 elderly control 74 No III 1 53 Heart failure 
and Lung cancer 

Not 
available 

Not remarkable 

9 elderly  control 94 No II 1 15 Left ventricle 
failure; 
Ischaemic heart 
disease 

Not 
available 

Not remarkable 

10 elderly  control 95 No III 0 66 Ischaemic 
bowel disease 
(inoperable) 

Not 
available 

Not remarkable 

11 elderly  control 96 No II 3 114 Stroke and left 
ventricular 
failure 

2 (mild) Not remarkable 

12 elderly  control 92 No VI 5 74 Pneumonia >2 Not remarkable 
13 CAA case 93 Yes VI 5 53 Stroke, general 

deterioration 
13 mild, some 

vessels with 
perivascular 
infiltrate 

14 CAA case 73 Yes IV 5 47 Frontal Lobe 
Dementia 

1.3 Not remarkable 

15 CAA case 76 Yes VI 3 37 n/a 8 Not remarkable 
16 CAA case 87 Yes VI 5 54 Aspiration 

pneumonia 
secondary to 
stroke 

8 Not remarkable 

17 CAA case 86 No VI 5 47 n/a 6 Not remarkable 
18 CAA case 77 No VI 2 63 Aspiration 

pneumonia 
14 Not remarkable 

19 CAA case 88 No VI 5 84 Broncho-
pneumonia 

15 Not remarkable 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 
 

 
  



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyrig

 

  

ght. All rights reserved. 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyrig

 

ght. All rights reserved. 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

 


