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Abstract32�

Non-amyloid cerebral small vessel disease (CSVD) and cerebral amyloid33�

angiopathy (CAA) may be interrelated by the damaged basement membranes34�

(BMs) and extracellular matrix changes of small vessels, resulting in a failure35�

of ȕ-amyloid (Aȕ) transport and degradation. We analysed BM changes and36�

the pattern of deposition of Aȕ in the walls of blood vessels in spontaneously37�

hypertensive stroke-prone rats (SHRSP), a non-transgenic CSVD model.38�

In 45 SHRSP and 38 Wistar rats aged 18 to 32 weeks 1) the percentage area39�

immunostained for vascular collagen IV and laminin was quantified, 2) the40�

capillary BM thickness as well as endothelial and pericyte pathological41�

changes were analysed using transmission electron microscopy (TEM) and 3)42�

the presence of vascular Aȕ was assessed.43�

Compared to controls, SHRSP exhibited a significantly higher percentage44�

area immunostained with collagen IV in the striatum and thalamus. SHRSP45�

also revealed an age-dependent increase of the capillary BM thickness and of46�

endothelial vacuoles (caveolae) within subcortical regions. Endogenous Aȕ47�

deposits in the walls of small blood vessels were observed in the cortex (with48�

the highest incidence found within fronto-parietal areas), striatum, thalamus49�

and hippocampus. Vascular ∆-amyloid accumulations were frequently50�

detected at sites of small vessel wall damage.51�

Our data demonstrate changes in the expression of collagen IV and of the52�

ultrastructure of BMs in the small vessels of SHRSP. Alterations are53�

accompanied by vascular deposits of endogenous Aȕ. Impaired ∆-amyloid54�

clearance along perivascular and endothelial pathways and failure of55�
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extracellular A∆ degradation may be key mechanisms connecting non-amyloid56�

CSVD and CAA.57�

58�

Keywords: cerebral small vessel disease, cerebral amyloid angiopathy,59�

spontaneously hypertensive animal model, perivascular Aȕ drainage60�
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1. Introduction61�

Non-amyloid sporadic cerebral small vessel disease (CSVD) and sporadic62�

cerebral amyloid angiopathy (CAA) have been considered as rather distinct63�

vascular pathologies of the ageing brain [1]. CSVD is predominantly64�

characterized by endothelial damage, blood brain barrier (BBB) breakdown65�

and subsequent small vessel wall degeneration, while CAA is mainly66�

characterized by the deposition of amyloid-ȕ (Aȕ) in the basement67�

membranes of capillaries and smaller arteries [2, 3]. CSVD and CAA are both68�

related to cognitive decline and are frequently found in various dementia69�

subtypes, comprising those with Alzheimer’s disease (AD) neuropathology [4–70�

6].71�

As identified by transmitted light microscopy and magnetic resonance imaging72�

(MRI), cerebral small vessel wall damage in CSVD and CAA is indicated by73�

microbleeds in the grey matter and by an increased number of enlarged,74�

visible perivascular spaces (PVS) surrounding the arterioles in the basal75�

ganglia or in the white matter [7, 8]. Strictly cortical microbleeds and white76�

matter PVS appear to be associated with CAA, while the combination of77�

microbleeds and PVS in the basal ganglia and in mixed subcortical-cortical78�

locations seems to be more closely related to CSVD [9–11]. Although basal79�

ganglia, cortical and white matter microbleeds and PVS share a common risk80�

profile, including age and arterial hypertension [12–14], their different81�

locations suggest there may be differences between the pathogenic82�

mechanisms underlying CSVD and CAA.83�
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Recent multimodal in vivo imaging data, however, challenged the commonly84�

accepted distinction between CSVD and CAA, reporting an interaction85�

between CSVD load and Aȕ burden for the prevalence of cortical microbleeds86�

[15]. Those interactions may be explained by CSVD related inflammatory and87�

degenerative small vessel wall changes also affecting the integrity of the88�

extracellular matrix, vascular basement membranes and endothelium which in89�

turn could lead to a failure of ∆-amyloid degradation and transport, and thus to90�

CAA development [16]. On the other hand, in CAA, the progressive91�

accumulation of Aȕ results in tunica media degeneration and BBB breakdown,92�

resembling closely the changes that occur in CSVD [2, 17]. It thus seems that93�

non-amyloid CSVD and CAA are conditions that appear within the same94�

disease spectrum.95�

Our study aimed to investigate whether there is an association between96�

CSVD and specific basement membrane and extracellular matrix changes97�

that could underline the relationship between CSVD and CAA. We therefore98�

examined morphological and biochemical alterations of small vessel99�

basement membranes and whether there is any sporadic deposition of Aȕ in100�

the walls of blood vessels in spontaneously hypertensive stroke-prone rats101�

(SHRSP), a valid model of non-amyloid cerebral small vessel disease [18].102�
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2. Materials and Methods103�

2.1. Animals104�

All animal procedures were conducted after obtaining the approval of the105�

Animal Care Committee of Sachsen Anhalt, Magdeburg, Germany (reference106�

number of license for animal testing 42502-2-1148 DZNE). Animals were107�

obtained from Charles River Laboratories International Inc., Wilmington, MA,108�

USA, housed with a natural light–dark cycle and were allowed to access water109�

and food ad libitum. To record the health status of all animals, neurological110�

function such as decreased spontaneous activity, coordination failure, falling111�

to one side and hunched posture was assessed daily and body weight was112�

monitored weekly.113�

Overall, 45 male SHRSP and 38 male Wistar rats were included in the study.114�

For histology 19 SHRSP (18 weeks (w) n=6, 24w n=6, 32w n=7) and 14115�

Wistar rats (18w n=4, 24w n=5, 32w n=5), for collagen IV and laminin116�

immunohistochemistry 15 SHRSP (18w n=5, 24w n=5, 32w n=5) and 15117�

Wistar rats (18w n=5, 24w n=5, 32w n=5), for STL immunohistochemistry 9118�

SHRSP (18w n=3, 24w n=3, 32w n=3) and 9 Wistar rats (18w n=3, 24w n=3,119�

32w n=3), for Aȕ-immunohistochemistry 10 SHRSP (18w n=1, 28w n=2, 32w120�

n=7) and for transmission electron microscopy (TEM) 9 SHRSP (18w n=3,121�

24w n=3, 32w n=3) and 9 Wistar rats (18w n=3, 24w n=3, 32w n=3) were122�

investigated.123�

For histology and immunohistochemistry, animals were perfused intracardially124�

with phosphate-buffered saline (PBS) and 4% paraformaldehyde (PFA).125�

Brains were fixed in 4% PFA for 48 hours and cryoprotected in 30% sucrose126�
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(6 days); they were then sectioned using a cryostat and coronal brain sections127�

(30 µm thickness) were taken from 11 planes from the frontal to the occipital128�

pole.129�

For TEM, after perfusion with PBS brains were fixed in a 2%formalin-130�

2.5%gluteralaldehyde-mixture for 48 hours.131�

2.2. Procedures132�

2.2.1. General histological assessment133�

Eleven coronal sections (one section per plane) per animal were stained with134�

Congo red (CR), CR/Prussian blue, Thioflavin S/Prussian blue and Thioflavin135�

T/Prussian blue for the simultaneous detection of dense vascular Aȕ136�

accumulations and iron deposits indicative of small vessel wall damage [19].137�

2.2.2. Immunohistochemistry for basement membrane and endothelial138�

components139�

For anti-collagen IV and anti-laminin immunohistochemistry 12 coronal140�

sections per animal were stained. In short, sections were incubated in 3%141�

hydrogen peroxide (15 min), incubated in pepsin (1 mg/mL in 0.2N HCL, 4142�

min, at 37 °C), blocked with 15% normal goat serum (15 min, room143�

temperature), and then incubated overnight either with rabbit anti-rat collagen144�

IV (1:500, Abcam, Cambridge, UK) or with rabbit anti-rat laminin (1:500;145�

Sigma-Aldrich,  Dorset,  UK)  in  PBSt  (PBS with  0.1% triton)  at  4°C.  The next146�

day, sections were first incubated with biotinylated goat anti-rabbit IgG in147�

PBSt (1:400, Vector, Peterborough, UK), then incubated with an Avidin-Biotin148�

Complex (ABC) (1:200, 1h, room temperature), and developed using glucose149�
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oxidase Diaminobenzidine (DAB)-nickel enhancement. Photomicrographs150�

were captured using a Leica transmission light microscope and exported to151�

Image J software (NIH, Maryland, USA) for quantification.152�

For anti-STL immunohistochemistry 3 coronal sections per animal were153�

stained. In short, repeated washing of the slices in PBS and blocking with 0.1154�

mol/L PBS, 0.5% Triton-X and 10% donkey serum was followed by155�

immunohistochemical staining with solanum tuberosum lectin-fluorescein156�

isothiocyanate (STL-FITC, 1 :500, Axxora, Enzo Life Sciences GmBH,157�

Lörrach, GER) overnight at 4°C in PBS containing 5% donkey serum. Finally158�

DAPI  staining  (DAPI  =  4ƍ.6-Diamidin-2-phenylindol, 1:10000; MoBiTec,159�

Göttingen, GER) was performed for 20 minutes at room temperature. After160�

dehydration with increasing concentrations of alcohol, slices were mounted on161�

slides with Histomount.162�

2.2.3. Assessment of the presence of endogenous Aȕ in SHRSP163�

Five sections per animal were stained. Sections were pretreated with citrate164�

buffer (70 °C, 30 min), repeatedly washed in PBS, blocked with 10% donkey165�

serum, and subsequently stained with STL-FITC (solanum tuberosum lectin-166�

fluorescein isothiocyanate, endothelial marker, 1:500; Axxora, Enzo Life167�

Sciences GmbH, Lörrach, GER) and rabbit anti-rodent Aȕ (1:500; Covance,168�

Dedham, MA, USA) as primaries overnight at 4 °C. Cy5-donkey anti-rabbit169�

IgG (1:500, detection of Aȕ; Jackson Immuno Research) was used as170�

secondary antibody for two hours, and DAPI (4’.6-diamidino-2-phenylindol,171�

nuclear staining, 1:10.000; MoBiTec GmbH, Göttingen, GER) staining was172�

performed for 20 min at room temperature. After dehydration with increasing173�
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concentrations of alcohol, sections were mounted on slides with Histomont174�

(Fisher Scientific GmbH, Schwerte, GER).175�

2.2.4. Transmission electron microscopy for analysis of the ultrastructure of176�

the cerebrovascular basement membranes177�

Sagittal sections (100 µm) were stored in 0.01M PBS, pH 7.2 until being178�

processed for TEM. Frontoparietal cortex, striatum, hippocampus and179�

thalamus were microdissected and processed as follows: sections were180�

washed in 0.1M phosphate buffer (PB) pH 7.2, post-fixed in osmium tetroxide181�

(1% in 0.1M PB at pH 7.2, 1 hour) and then dehydrated (alcohol series: 30%182�

for 10 min, 50% for 10 min, 70% (in 2% uranyl acetate) for 40 min, 90%183�

overnight and absolute for 2x10 min). Sections were then treated with neat184�

acetonitrile (10 min), immersed in a resin (TAAB Laboratories Equipment,185�

Aldermaston, UK) and acetonitrile mix (50:50) over night, and on the following186�

day treated with fresh neat TAAB resin (6h) before being placed in fresh resin187�

(TAAB Laboratories Equipment, Aldermaston, UK) for polymerization (60°C,188�

18 hours). Once polymerised, the tissue was sectioned (Leica-Reichert189�

Ultracut E ultra-microtome, Leica, UK), cut into 0.5 ȝm thick sections,190�

mounted on frosted glass slides and analysed on a Nikon 80i brightfield191�

microscope (Nikon, Japan, x75 magnification) to confirm if the section192�

contained a sufficient amount of capillaries. Ultra-thin transverse sections (90193�

nm) were prepared and floated on to copper/palladium TEM grids for194�

visualisation of the capillaries. Only cross-sectional capillaries were195�

considered. For quantification images were exported to ITEM software196�

(Olympus, UK). Images were exported to Photoshop CS software (Adobe,197�

UK), for qualitative observations of the structures of the capillary walls.198�
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2.3 Data analysis and quantification199�

2.3.1. Immunohistochemical assessment of cerebrovascular basement200�

membranes and endothelial components201�

The relative % signal area of collagen-IV- and laminin-positive capillaries202�

(luminal diameter < 15 µm) and arterioles/small arteries (luminal diameter ï203�

15 µm) [21, 22] was quantified in 6 randomly chosen sections from different204�

brain regions per animal. Analyses were performed separately in the cortex,205�

striatum and thalamus. For each region, 4 randomly selected fields of view206�

(FOVs) per section were quantified using Image J (NIH, Maryland, USA). By207�

setting a threshold for staining intensity and determining the vessel size (< or208�

ï 15 µm, see above), we calculated the percentage of coverage of vessels209�

relative to the background per FOV for each region. STL-positive capillaries210�

and arterioles were counted in 10 randomly selected FOVs per animal and211�

region (cortex, striatum, thalamus).212�

2.3.2. Assessment of endogenous Aȕ in SHRSP213�

The presence of immunocytochemically and histologically detected Aȕ214�

deposits in the walls of capillaries (luminal diameter < 15 µm) and arterioles215�

(luminal diameter ï 15 µm) was first assessed in a binary manner (existent,216�

not existent). The number of Aȕ positive vessels was then counted within 3217�

FOVs per section using all available sections stained for the assessment of ∆-218�

amyloid (see above). Cortical, striatal, hippocampal and thalamic regions219�

were analysed.220�
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2.3.3. Analyses of cerebrovascular basement membranes by transmission221�

electron microscopy222�

Three TEM grids per animal were used for analysis of cortical, striatal,223�

hippocampal and thalamic capillaries defined as having: a luminal diameter of224�

4.0-15 µm [23], a single endothelial layer with tight junctions and a fused225�

endothelial-astroglial basement membrane. For analysis, 5 transversely226�

orientated capillaries per animal were randomly chosen. To assess the overall227�

vessel structure, those capillaries were imaged first at x9.000. Basement228�

membrane thickness was subsequently determined at x50.000 by taking 20229�

measurements per capillary along each of the two thinnest points of the230�

capillary wall [20]. We additionally quantified the number of (i) endothelial231�

vacuoles (caveolae), (ii) extensions of the endothelial cells into the lumen232�

(“bridging of the endothelium”), (iii) tight junctions that appear to have lost the233�

normal architecture and (iv) abnormal appearing pericytes.234�

2.4. Statistical analysis235�

To determine group differences between SHRSP and Wistar controls, general236�

linear models were conducted with group as independent variable and the237�

following were considered as dependent variables: (i) immunocytochemical238�

collagen IV and laminin relative % signal area, (ii) immunohistochemical STL-239�

positive vessels, (iii) thickness of basement membranes as measured by TEM240�

and (iv) endothelial or pericyte pathologies, that are (a) endothelial vacuoles,241�

(b) “endothelial bridging”, (c) open tight junctions and (d) abnormal pericytes,242�

as quantified using TEM (please see also 2.3.3). When the variables (i) to (iv)243�
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(a)-(d) demonstrated a dependency on age, the respective model was244�

adjusted for age.245�

To address the issue of multiple comparisons, the following p-values were246�

deemed to be significant:247�

ω for collagen IV/laminin/STL data (respectively quantified in 3 regions) p248�

î 0.05/9 = 0.006249�

ω for basement membrane thickness or endothelial vacuoles or250�

“endothelial bridging” or open tight junctions or abnormal pericytes251�

(respectively quantified in 4 regions) p î 0.05/4 = 0.013, respectively252�
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3. Results253�

3.1. Immunohistochemical signal area of collagen IV and laminin254�

SHRSP exhibited a significant, around 2fold higher cortical, striatal and255�

thalamic percentage area immunostained for collagen IV in vessels with a256�

luminal diameter ï 15 µm compared to Wistar controls (Table 1, Figure 1 &257�

Figure 2). There were no group differences between SHRSP and Wistar rats258�

for the percentage area immunostained for collagen IV in vessels with a259�

luminal diameter < 15 µm (capillaries) (Table 1, Figure 1). Compared to260�

Wistar controls, SHRSP displayed significantly higher numbers of cortical261�

vessels with a luminal diameter ï 15 µm (as indicated by STL-positivity). The262�

upregulation of immunostaining for collagen IV observed in the cortical263�

vessels with a luminal diameter ï 15 µm in SHRSP was related to vessel264�

density alterations (Table 2). Collagen IV group differences found in striatal265�

and thalamic vessels with a luminal diameter ï 15 µm were, however, not266�

associated with changes of vessel density. There were no overall group267�

differences for laminin in any of the regions involved (data not shown).268�

3.2. Ultrastructural features of basement membranes269�

The capillary thickness of the basement membrane as measured by TEM270�

software was related to age in SHRSP (p = 0.004 for striatum, p = 0.011 for271�

hippocampus, p = 0.001 for thalamus), but not in Wistar rats (Figure 1).272�

Significant age-independent (up to 1.3fold) increases in the capillary273�

basement membrane thickness in SHRSP compared to Wistar rats were274�

observed in the striatum (p < 0.001), in the hippocampus (p < 0.001) and in275�

the thalamus (p = 0.004) (Table  3  &  Figure  1). The capillary basement276�
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membranes in the cortex of SHRSP were also thicker compared to those in277�

Wistar control rats (p = 0.018, trend-level, Table 3).278�

Qualitative morphological changes of the capillary walls were observed in279�

SHRSP and in Wistar controls that is degeneration of pericytes, folding of the280�

tight junctions, accumulation of electron lucent lysosomes or lipofuscin and an281�

increased number of caveolae in endothelial cells and pericytes. Fibrillar282�

structures and electron dense deposits were additionally observed in the283�

thickened BMs (Figure 3).284�

Quantification of endothelial and pericyte pathologies revealed a significant285�

age-related increase of abnormal pericytes within the striatum of the SHRSP286�

(p = 0.004) and a significant age-related decrease of “endothelial bridging”287�

within the Wistar controls’ striatum (p = 0.004). Compared to Wistar rats288�

SHRSP displayed significant higher numbers of endothelial vacuoles in the289�

striatum (p = 0.004) and in the hippocampus (p = 0.023, trend-level). On a290�

trend-level SHRSP moreover revealed higher numbers of abnormal cortical291�

pericytes (p = 0.07) when compared to Wistar animals.292�

3.3. Endogenous vascular ∆-amyloid deposits in SHRSP293�

Histological assessment of rodent Aȕ revealed that nearly all SHRSP294�

sporadically developed vascular Aȕ deposits resembling cerebral amyloid295�

angiopathy: at an age of 18w, 5 out of 6 animals were affected (83%), and296�

from an age of 24w on, 13 out of 13 SHRSP (100%) were affected. Deposits297�

were detected in cortical regions in 100% of the animals (mean number of A∆-298�

positive vessels/FOV 7.3) with the distribution was as follows: in 83% of the299�

SHRSP vascular ∆-amyloid accumulations were detected in parietal cortices300�
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(mean/FOV 4.2), while in 56% (mean/FOV 2.5) or 33% (mean/FOV 0.5) they301�

were found in frontal or occipital cortices. Aȕ deposits were also observed in302�

the striatum (56%, mean/FOV 1.7), the hippocampus (61%, mean/FOV 1.8)303�

and the thalamus (28%, mean/FOV 1.3). Figure 4 visualizes the incidence304�

with  which  Aȕ-positive vessels in the respective regions were found in305�

SHRSP. Regional color-coding reflects the percentages of affected rats in the306�

respective regions.307�

Immunohistological assessment of rodent Aȕ revealed CAA in 9 out of 10308�

SHRSP (90%); all affected animals were at an age of 28w and 32w. In cortical309�

regions, CAA was found in 50%, in the striatum in 40%, in the hippocampus in310�

90%, and in the thalamus in 50% of all SHRSP. Highest number of CAA-311�

positive vessels was found in the hippocampus, while the striatum displayed312�

the lowest number.313�

Deposits of Aȕ were observed in vessels with a luminal diameter ï 15 µm and314�

appearance characteristic of small arteries/arterioles as well as in the walls of315�

capillaries with luminal diameter < 15 µm. All deposits of Aȕ were located on316�

the abluminal side of the small vessel walls and not on the endothelial surface317�

(Figure 5). Furthermore, these deposits were compact, as determined by the318�

Thioflavin staining (Figure 5). Of all A∆ depositing vessels within the whole319�

brain 95% additionally displayed iron accumulations (95% in the cortex, 97%320�

in the striatum, 97% in the hippocampus, 96% in the thalamus) (Figure 5).321�

None of the Wistar animals exhibited any histologically detectable vascular Aȕ322�

accumulations.323�
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4. Discussion324�

Our analysis revealed a significant age-independent increase in the325�

immunohistochemical signal area of collagen IV in subcortical small326�

arteries/arterioles of spontaneously hypertensive stroke prone rats, compared327�

to Wistar controls. The increased percentage area immunostained for328�

collagen IV in cortical regions was related to an increased number of329�

arterioles/small arteries in SHRSP. The basement membranes of subcortical330�

capillaries in the striatum, thalamus and hippocampus were significantly331�

thicker in aged SHRSP compared to control animals, with the capillary332�

basement membranes of the cortex following the same trend. This increase in333�

thickness of the capillary basement membranes was, however, not explained334�

by a capillary increase of the collagen IV or laminin expression. It was indeed335�

accompanied by qualitative and quantitative alterations of the neurovascular336�

unit comprising higher numbers of (i) subcortical endothelial vacuoles and (ii)337�

abnormal cortical pericytes. Additionally, the hypertensive stroke prone rat338�

developed endogenous capillary and arteriolar/arterial vascular Aȕ deposits339�

(CAA), commonly occurring at the abluminal vessel wall side and adjacent to340�

cortical and subcortical small vessel wall damage. One may speculate that341�

CAA development in SHRSP might result from different reasons that are342�

failure of perivascular ∆-amyloid drainage along the altered basement343�

membranes together with A∆ transport disturbances across the leaking BBB344�

and extracellular matrix protein alterations favouring ∆-amyloid aggregation345�

[24].346�
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Overall, our results confirm (i) the mutual occurrence of non-amyloid CSVD347�

and CAA, as it is commonly found in the aging brain. Despite CAA was348�

predominantly detectable in (fronto-parietal) cortical regions, subcortical areas349�

such as the basal ganglia or the hippocampus were also frequently affected,350�

which is different from humans. These data moreover suggest that (ii)351�

degenerative capillary basement membrane changes occur as a function of352�

age (in combination with arterial hypertension and CSVD). Underlying353�

mechanisms of overall capillary basement membrane alterations (which were354�

characterized by thickening and structural changes of the neurovascular unit)355�

seem thereby to differ from subcortical arteriolar/arterial basement membrane356�

changes (which were characterized by an increase of the collagen IV357�

expression).358�

Spontaneous CAA development in a non-transgenic non-amyloid CSVD359�

model suggests that there should be some mechanisms connecting the two360�

small vessel disease entities. The soluble Aȕ-protein is eliminated from the361�

brain along the cerebral vascular system by a variety of mechanisms362�

comprising (i) enzymatic degradation, (ii) transport across the blood-brain363�

barrier and (iii) brain-wide lymphatic Aȕ-drainage into the extracranial364�

lymphatic system (a) along the vessels’ basement membranes or (b) along365�

glial water channels of the glymphatic system [25–27]. All of the mechanisms366�

for the elimination of Aȕ depend on the existence of vascular and extracellular367�

matrix integrity, which fails with age, high vascular risk and vessel wall368�

damage, as found in non-amyloid CSVD [26, 27]. Alterations of the Aȕ369�

clearance pathways in the cerebral vessel walls caused by BBB breakdown,370�

basement membrane and neurovascular unit damage comprising extracellular371�
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matrix proliferation, result in the accumulation of solutes such as ∆-amyloid in372�

the small vessel walls. Our findings of extracellular matrix protein and small373�

vessel basement membrane alterations in CSVD along with CAA374�

development, suggest that failure of ∆-amyloid drainage and degradation may375�

play a crucial role in connecting non-amyloid and amyloid-related CSVD.376�

Failure of perivascular A∆ transport is additionally supported by the377�

observation that in our SHRSP model vascular Aȕ was mainly found (i) in the378�

protein clearance pathways at the abluminal side of the small vessel walls and379�

(ii) at sites of small vessel wall damage.380�

Our results replicate previous findings in the SHRSP and SHR (spontaneously381�

hypertensive rat), namely capillary basement membrane thickening (which382�

depended on age) and the occurrence of qualitative capillary wall changes383�

such as endothelial degeneration [28, 29]. In SHRSP small vessel wall384�

changes are moreover accompanied by structural vascular smooth muscle385�

cell alterations surrounded by many layers of basal lamina-like material of the386�

large arteries, that is e.g. the middle cerebral artery [30]. In the small387�

vasculature, plasma protein leakage (which is commonly found in our388�

experimental CSVD model [18, 22]) related to endothelial damage may389�

thereby be one underlying mechanism explaining the accompanying390�

quantitative capillary basement membrane thickening [31, 32]. The latter has391�

been studied by Fredriksson et al. demonstrating that in SHRSP at BBB392�

leakage sites small vessel wall structures can be replaced by multiple393�

basement membrane layers and bundles of collagen fibrils resulting in small394�

vessel wall thickening and stenosis [28]. Regions without BBB damage,395�

however, seem to be free of any vascular alterations [28]. In our study,396�
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endothelial alterations and BBB breakdown became also evident by chronic397�

(perivascular) iron accumulations (see Figure 5). The capillary collagen IV398�

and laminin expression patterns, however, remained unchanged, suggesting399�

that other extracellular matrix proteins may be responsible for the thickening400�

observed.401�

Our data, however, differ from studies performed by Bailey et al. who did not402�

find differences of the collagen IV percentage area in SHRSP compared to403�

Wistar controls [33]. The authors assessed animals aged 5, 16 and 21 weeks,404�

so overall younger than ours that were 18, 24 and 32 weeks; it thus seems to405�

be very conceivable that collagen IV upregulation accompanies overall vessel406�

wall changes progressing as a function of age in SHRSP [22].407�

Subcortical arteriolar basement membrane alterations were, however,408�

characterized by an upregulation of collagen IV. One may speculate that the409�

increased expression of arteriolar/arterial collagen IV may result from its410�

reduced degradation [34], or from its increased synthesis [28, 35, 36], which,411�

overall may be explained by hypertension-associated changes of matrix412�

metalloproteases activities, and inflammation within the vessel wall [34]. The413�

latter may also account for regional angiogenesis and associated higher414�

microvessel densities [37] found in our hypertensive rat model. Future studies415�

have to better elucidate the pathomechanisms underlying the different416�

capillary and arteriolar/small artery BM alteration patterns and their relation to417�

age.418�

Our study confirms the observation that non-transgenic animal models with419�

CSVD and/or arterial hypertension sporadically develop vascular Aȕ deposits420�
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[38–40]. Interestingly, the regional distribution of CSVD (for further details see421�

[22]) and CAA in the SHRSP model does not represent the commonly422�

accepted pattern in humans of “mainly subcortical- (and white-matter-)423�

dominant” CSVD and “mainly occipital cortical-dominant” CAA. Instead, in424�

SHRSP, both, non-amyloid CSVD and CAA seem to similarly spread into425�

cortical, especially into fronto-parietal, and subcortical regions. This essential426�

finding might be related to differences of anatomical characteristics of the427�

regional cerebral blood vessels between rodents and humans. In humans,428�

cortical and striatal vessels differ this way that cortical arterioles/arteries are429�

characterized by a layer of leptomeninges that is closely adherent to the wall430�

of the vessel, without a perivascular space, whereas in the basal ganglia there431�

are two such layers, separated by a perivascular space [41]. This suggests432�

that in humans Aȕ that is unable to clear efficiently across the endothelium or433�

by perivascular clearance may accumulate in the walls of cortical arteries, but434�

not in the basal ganglia, where (human) CAA is very rare [42]. It is reasonable435�

to assume that regional differences in the anatomy of the walls of the cortical436�

and subcortical arteries may also exist in rodents and this is supported by the437�

higher cortical frequency of vascular Aȕ deposits. The quite equal distribution438�

of non-amyloid CSVD and CAA in the SHRSP makes it, however, a promising439�

model for studying the interactions between both types of small vessel440�

disease.441�

Our findings should be viewed in light of some limitations comprising missing442�

mechanistic links between non-amyloid CSVD and CAA. We can speculate443�

about the possible causes leading to Aȕ retention in SHRSP, such as the444�

failure of endothelial transporter functions, which will need to be addressed in445�
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future studies. Additionally, we assume that the differences of vascular ∆-446�

amyloid detection using either histological or immunohistochemical stainings447�

rather result from our quantification approach than from sensitivity issues of448�

the various stainings. This way, that for histology slices covering nearly the449�

whole brain were quantified, while quantification of immunohistochemical data450�

took place using just exemplary slices. Those findings overall show, that the451�

SHRSP strain displays a patchy and heterogeneous distribution of vascular ∆-452�

amyloid positivity. Evaluation of the whole brain rather than performing453�

regionally circumscribed analysis should thus be considered the gold standard454�

when investigating the vascular ∆-amyloid status of that rat model.455�

In conclusion, our data confirm the relationship between age, non-amyloid456�

CSVD, arterial hypertension and ultrastructural and biochemical capillary and457�

arteriolar/arterial basement membrane and extracellular matrix changes. They458�

moreover suggest that non-amyloid CSVD and CAA should be considered as459�

part of the same vascular disease spectrum in the ageing brain.460�
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Tables468�

Table 1. Collagen IV mean relative % signal area per group and region.469�

SD [standard deviation], SHRSP, spontaneously hypertensive stroke-prone470�

rats,  p î 0.006 was deemed to be significant. The F-ratio demonstrates the471�

explained variance divided by the unexplained variance of the statistical472�

model.473�

Wistar,
n=15

SHRSP,
n=15

Vessels Region Mean [SD] Mean [SD] F-ratio
(p-value)�

Collagen IV
all vessels

Cortex 2.90 [1.29] 4.40 [3.18] 6.59 (0.013)�
Striatum 2.09 [1.07] 3.39 [2.92] 6.17 (0.016)�
Thalamus 2.32 [1.73] 3.91 [3.48] 5.45 (0.023)�

Collagen IV
vessels > 15µm

Cortex 3.40 [1.71] 6.67 [3.42] 10.95 (0.003)�
Striatum 2.44 [1.42] 5.46 [3.14] 11.51 (0.002)�
Thalamus 2.99 [2.28] 6.30 [3.58] 9.46 (0.005)�

Collagen IV
vessels <15µm

Cortex 2.43 [0.37] 2.40 [0.56] 0.21 (0.65)�
Striatum 2.44 [1.42] 1.58 [0.57] 1.52 (0.23)�
Thalamus 1.69 [0.5] 1.60 [0.75] 0.40 (0.53)�
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Table 2. STL-positivity per group and region.474�

SD [standard deviation], SHRSP, spontaneously hypertensive stroke-prone475�

rats,  p î 0.006 was deemed to be significant. The F-ratio demonstrates the476�

explained variance divided by the unexplained variance of the statistical477�

model.478�

Wistar,
n=9

SHRSP,
n=9

Vessels Region Mean [SD] Mean [SD] F-ratio
(p-value)

STL-positivity
all vessels

Cortex 56.96 [4.47] 58.88 [4.54] 8.18 (0.010)
Striatum 41.64 [5.48] 45.18 [6.38] 15.88 (<0.001)
Thalamus 40.71 [4.73] 40.30 [4.14] 0.39 (0.5)

STL-positivity
vessels > 15µm

Cortex 2.01 [1.00] 3.41 [1.03] 85.89 (<0.001)
Striatum 2.72 [1.15] 3.07 [1.31] 3.52 (0.06)
Thalamus 2.94 [1.31] 2.91 [1.16] 0.23 (0.60)

STL-positivity
vessels <15µm

Cortex 54.94 [4.37] 55.47 [4.46] 0.63 (0.43)
Striatum 38.92 [5.43] 42.11 [6.06] 13.82 (<0.001)
Thalamus 37.77 [4.49] 37.39 [4.08] 0.35 (0.60)
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Table 3. Basement membrane thickness as measured using TEM per479�

group and region. SD [standard deviation], SHRSP, spontaneously480�

hypertensive stroke-prone rats, p î 0.013 was deemed to be significant. The481�

F-ratio demonstrates the explained variance divided by the unexplained482�

variance of the statistical model. All values are given in nm. TEM =483�

transmission electron microscopy.484�

Wistar, n=9 SHRSP, n=9
Region Mean [SD] Mean [SD] F-ratio

(p-value)�
Basement
membrane
thickness
in nm

Cortex 52.19 [3.26] 68.14 [17.82] 6.98 (0.018)�
Striatum 51.76 [5.53] 67.22 [10.83] 19.43 (0.001)�
Hippocampu
s

52.93 [4.86] 66.06 [8.25] 22.7 (< 0.001)�

Thalamus 51.65 [4.39] 64.22 [10.68] 8.38 (0.004)�
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