
Diem, A K and Bressloff, N W 2017 VaMpy: A Python Package
to Solve 1D Blood Flow Problems. Journal of Open Research
Software, 5: 17, DOI: https://doi.org/10.5334/jors.159

Journal of
open research software

SOFTWARE METAPAPER

VaMpy: A Python Package to Solve 1D Blood Flow
Problems
Alexandra K. Diem1,2 and Neil W. Bressloff2

1	Institute for Complex Systems Simulation, University of Southampton, UK
2	Computational Engineering and Design, Faculty of Engineering and the Environment, University of Southampton, UK
Corresponding author: Alexandra K. Diem (A.K.Diem@soton.ac.uk)

Finite-differences methods such as the Lax-Wendroff method (LW) are commonly used to solve 1D models
of blood flow. These models solve for blood flow and lumen area and are useful in disease research, such
as hypertension and atherosclerosis, where flow and pressure are good indicators for the presence of
disease. Despite the popularity of the LW method to solve the blood flow equations, no implementation
of a LW solver for these equations has been published and made publicly available. This leads to the
reimplementation of the same methods within different research groups and makes verification of results
more difficult. The Vascular Modelling in Python (VaMpy) toolkit is a Python package that aims to fill this
gap. It implements Richtmyer’s two-step Lax-Wendroff scheme to solve 1D model equations of blood flow in
arterial trees and aims at facilitating the solution of blood flow problems for various medical applications.

Keywords: Python; blood flow; arterial tree; hemodynamics; finite differences; partial differential
equations
Funding statement: The development of this software was supported by an EPSRC Doctoral Training
Centre grant (EP/G03690X/1).

(1) Overview
Introduction
One-dimensional (1D) modelling of the cardiovascular
system is useful in predicting and understanding the
dynamics of blood pressure propagation [1, 2, 3, 4, 5, 6].
Here, arteries are regarded as 1D axisymmetric tubes that
are described by flux q inside the lumen and cross-sectional
area A of the vessel lumen along the vessel length. One popu-
lar finite-differences method to numerically solve the equa-
tions governing blood flow through arteries is Richtmyer’s
two-step Lax-Wendroff method [7, 8], which has been used
by a number of groups [1, 4, 6, 9, 10, 11]. Alternative meth-
ods of solving the blood flow equations include for exam-
ple variations of the Galerkin finite-element method, which
instead solve the blood flow equations for flow velocity u
and cross-sectional area A [2, 12].

The computational implementation of the Lax-Wendroff
method is straightforward and previously mentioned ref-
erences have produced results that are validated against
experimental results, justifying the popularity of the
method. However, no openly available implementation of
the Lax-Wendroff method could be found, which results in
the same work being carried out numerous times. Whilst
one open-source Python package implementing a haemo-
dynamic model exists, pyNS focusses on the implementa-
tion of a 0D pulse wave propagation model, representing

arteries as electrical circuits [13], and therefore its scope
and application are different from VaMpy. Solutions
computed using VaMpy are exported to the commonly
used CSV file format, thereby allowing for the integration
of data with most other software. For example, solutions
calculated using VaMpy could be used as a boundary con-
dition for higher order models of larger arteries further
upstream.

Arteries are considered to be elastic axisymmetrical
tubes of initial radius r0(z) in a cylindrical coordinate
system. The radius at rest is allowed to taper exponen-
tially for an arterial segment if different values are given
for the upstream radius Ru and downstream radius Rd. An
example geometry for the bifurcation of the common
carotid artery, which is used to validate the solution cal-
culated by VaMpy is shown in Figure 1. Then the vessel
radius for an arterial segment of length L is

	
0 () · exp log .d

u

u

R z
r z R

R L
=

⎛ ⎛ ⎞ ⎞
⎜ ⎜ ⎟ ⎟
⎝ ⎝ ⎠ ⎠

� (1)

Blood flow through arteries is governed by the Navier-
Stokes equations for conservation of mass (continuity
equation) and momentum in a 1D cylindrical coordinate
system

https://doi.org/10.5334/jors.159
mailto:A.K.Diem@soton.ac.uk

Diem and Bressloff: VaMpyArt. 17, p. 2 of 7

	

()(, ,)(, ,) 1
0rz ru r z tu r z t

z r t

∂∂
+ =

∂ ∂
� (2)

	

(, ,) (, ,)
(, ,)

(, ,) 1 (,)
(, ,)

(, ,)
 ,

z z
z

z
r

z

u r z t u r z t
u r z t

t z
u r z t p z t

u r z t
r z

u r z t
r

r r r

ρ

ν

∂ ∂
+

∂ ∂

∂ ∂
+ +

∂ ∂

∂∂
=

∂ ∂
⎛ ⎞
⎜ ⎟
⎝ ⎠

� (3)

where u = (uz (r, z, t), ur (r, z, t)) denotes blood flow veloc-
tiy, p(z, t) denotes blood pressure, which is assumed to
be uniform across r and the parameters ρ and ν denote
blood density and viscosity, respectively. By integration
of the governing equations over cross-sectional area
A(z, t) = πR(z, t)2 the 1D conservation law

	 t z

∂ ∂
+ =

∂ ∂

U F
S � (4)

with

2

0 0

1

1

0
0 0

0

0 0

0

(,)
(,)

, ,(,)
(,) () () (,)

(,)

0

2 (,) (,)

Re (,)

()
2 (,) () ()

() ()
(,)

b

q z t
A z t

q z t
q z t f r A z A z t

A z t

S

R z t q z t
S

A z t

df r
A z t f r A z

dr

df r dr z
A z t

dr dz

π

δ

π

= =
+

=

= − +

+

−

⎛ ⎞
⎛ ⎞ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

⎛ ⎛ ⎞
⎜ ⎜ ⎟
⎝ ⎝ ⎠

⎞
⎟
⎠

⎝ ⎠ ⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

U F

S

can be derived. Details on the derivation of (4) can
be found elsewhere [1, 6]. Here, the unknowns are
the vessel cross-sectional area A(z, t) and flux q(z, t).
Elasticity of the vessel is described by the quantity
f(r0) with relaxed vessel radius r0(z), A0(z) is the relaxed
cross-sectional vessel area, R(z, t) the vessel radius, δb is
the boundary layer thickness and Re is the Reynold’s
number.

Although these equations have been commonly used by
various groups [1, 4, 5, 14], no publicly accessible imple-
mentation of the solution to (4) could be found, meaning
that each publication from a separate group resulted in
the reimplementation of the same or very similar meth-
ods and equations. Therefore, the Vascular Modelling in
Python toolkit (VaMpy) was developed and published on
GitHub1 with the documentation available on GitHub
Pages.2 Support for the use of VaMpy is mainly available
via the Issue Tracker feature on GitHub, but also via con-
tacting the authors.

Implementation and architecture
The VaMpy implementation and architecture are
described in this section. VaMpy is object-oriented to
allow for an intuitive understanding of its design and to
facilitate the addition of new features. The base of the
package is the class ArteryNetwork, which defines the
arterial tree. The class contains methods that are applied
on the entire network of arteries as well as boundary
conditions. Each artery within the tree is defined as
an object of the class Artery, which contains its own
solver instance. The solver itself is implemented in the
independent class LaxWendroff that implements the
Lax-Wendroff method as described below. This approach
allows for the integration of other solvers within the
software.

The code was developed in Python 2.7 and implements
Richtmyer’s two-step version of the Lax-Wendroff method
[7, 8], which is second-order accurate in time and space.
For a point in time, n, the solution at the next time step
n + 1 at grid location m is given by

Figure 1: Example geometry of a bifurcation implemented in VaMpy. The example represents the common carotid
artery (parent vessel) and its two daughter vessels, which are used for validation purposes of the software. Artery seg-
ments have an upstream and downstream radius, where the downstream radius has to be equal to or smaller than the
upstream radius. The radius of the vessel then is

0 exp (lo .))(g / /() u d ur R R R z Lz = ⋅

Diem and Bressloff: VaMpy Art. 17, p. 3 of 7

	

()

()

1 1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2

1/ 2 1/ 2 ,
2

n n n n

m m m m

n n

m m

t

z
t

+ + +

+ −

+ +

+ −

Δ
= − − +

Δ
Δ

+

U U F F

S S
� (5)

where (,)n

m m z n t= Δ ΔU U is the solution at position m∆z
and time n∆t. The half time step values for F and S are
determined by

	

1/ 2 1/ 21/ 2

1/ 2 1/ 2 1/ 2 1/ 2

2 2

2

n n

j jn

j

n n n n

j j j j

t

z

+ −+

+ − + −

+ Δ
= +

− +
− +

Δ

⎛ ⎞
⎜ ⎟
⎝ ⎠

U U
U

F F S S
� (6)

for j = m ± 1/2. An illustration of the computational proce-
dure to determine 1n

m

+U is shown in Figure 2. It illustrates
that both initial conditions at n = 0 for all m and left and
right boundary conditions are required to determine U.

Boundary conditions are applied at both ends of the ves-
sel and are either an inlet, outlet or bifurcation condition.
The inlet boundary condition is used at the inlet of the
parent vessel only [1]. It requires flux values q(0, t) to be
prescribed. The inlet area is then calculated according to (5)

	
()1 1/ 2 1/ 2

0 0 1/ 2 1/ 2 .n n n nt
A A q q

z
+ + +

−

Δ
= − −

Δ
� (7)

This requires the evaluation of the term
1/ 2

1/ 2

nq +

− , which is
estimated from

	
()1/ 2 1/ 2 1/ 2

0 1/ 2 1/ 2

1
,

2
n n nq q q+ + +

−
= + � (8)

where
1/ 2

0

nq +
 is evaluated from the function prescribing

flux values at the inlet and 1/ 2

1/ 2

nq + is evaluated from (6), see
also [1, 4].

Algorithm 1: Iterative scheme to determine 1n

M

+U
using a 3WK boundary condition [4]. An initial
guess is made for

1n

Mp +
, from which

1n

Mq +
 is calculated

using (9) and 1n

MA + is calculated using the discretized

mass conservation equation (12). Using 1n

MA + the
next iteration of

1n

Mp +
 is found via the state equation

(11). The algorithm stops after kmax iterations or
when the difference between pressure estimates is
less than the small threshold value .

1 1

max

old

1
1 1 2

1 1 2 1 2

1 1 1

0 1

1 1 0

1

1

old

 :

()

()

()
1

| | :

1

0

n n n

M m M

n

M

n n n n
n n M M M M
M M

T T

n n n n

M M M

n n M
M M n

M

n

M

p p initial guess for p

k k

p p

p p tp tq R R
q q

R R R C R R C

t
A A q q

z

A
p f

A

p

k

k

p

k

+ +

+

+

+ + +

−

+ +

+

+

≤

=

− Δ Δ +
= + + −

Δ
= − −

Δ

= −

− ≤

=

= +

=

⎛ ⎞
⎜ ⎟
⎝ ⎠

for

if

break

ε

The outlet boundary condition is a three-element
Windkessel (3WK) and its implementation follows [4]. The
3WK equation is

	

1

2

1 2

2

(,) (,) (,)

(,)()
,

T

T

p z t q z t p z t
R

t t R C

q z t R R

R C

∂ ∂
= − +

∂ ∂

+
� (9)

where R1, R2 and CT are resistance and compliance
parameters. Discretization of (9) leads to

	

1 1

1

2

1 2

2

()
,

n n n n n

M M M M M

T

n

M

T

p p q q p
R

t t R C

q R R

R C

+ +− −
= − +

Δ Δ

+
� (10)

Figure 2: Illustration of the LW method. The solution is fully known at time step n (black circles) and we are looking for
the solution at grid point m at time step n + 1 (white circle). To determine the unknown solution, two intermediate
solutions at half grid points m ± 1/2 and at half time step n + 1/2 are determined from grid points m – 1, m and
m + 1 at current time step n. The intermediate solutions are then used in conjunction with the known solution at
grid point m and current time step n to calculate the unknown solution at grid point m and next time step n + 1 [4].

Diem and Bressloff: VaMpyArt. 17, p. 4 of 7

where M is the spatial position of the outlet. The 3WK
boundary condition requires the evaluation of pressure in
the vessel, which is related to area via the discretized State
Equation [1]

	

1 1 0

1

()
1 .n n M

M M n

M

A
p f

A
+ +

+
= −

⎛ ⎞
⎜ ⎟
⎝ ⎠

� (11)

The outlet boundary condition is solved using an iterative
scheme with an initial guess for 1n

Mp + (see Algorithm 1). This
requires a discretized version of the mass conservation
equation to obtain an estimate for 1n

MA +

	
()1 1 1

0 1 .n n n n

M M M

t
A A q q

z
+ + +

−

Δ
= − −

Δ
� (12)

Finally, a bifurcation boundary condition applies between
any vessel that is not a terminal vessel and its two daughter
vessels [1, 4]. Relations between parent and daughter ves-
sels lead to a system of eighteen equations for eighteen
unknowns, which are solved using Newton’s method
according to

	
1

1 (()) () for 0, 1, 2,k k k k k−

+
= − = …Jx x J x f x � (13)

where k indicates the current iteration, = (x1, x2, ..., x18), J
(xk)) is the Jacobian of the system of equations and fJ (xk)
is the vector of residuals. The full system of equations
required to solve the boundary conditions at bifurcations
can be found elsewhere [6, 15].

Algorithm 2: Setup routine for a network of
arteries. The artery network is created as a binary
tree and contains 2depth – 1 arteries. At each depth
level the up- and downstream radii of daughter
vessels are calculated using the scaling parameters
a and b. Artery objects are then created for each
new daughter vessel and stored in a list.

A simulation model is set up by creating an ArteryNetwork
object and solved by executing the following functions

from vampy.artery_network import ArteryNetwork
an = ArteryNetwork(Ru, Rd, a, b, lam, k, rho,
nu, p0, depth, ntr, Re)
an.mesh(dx)
an.set_time(dt, T[, tc])
an.initial_conditions(q0)
an.solve(q_in, out_args)

A network of arteries is created using the upstream and
downstream radii Ru and Rd of the parent vessel, the
radius-to-length ratio lam and scaling parameters a and
b using Algorithm 2. Two daughter vessels are created
for a parent vessel by multiplying their upstream and
downstream radii with scaling parameters a and b respec-
tively. This process is repeated until the desired tree depth
is reached and the number of arteries in the network is
2depth – 1. A second setup routine exists to create an artery
network, which is

an = ArteryNetwork(Ru, Rd, lam, k, rho, nu, p0,
depth, ntr, Re)

Here, Ru, Rd and lam are iterables (for example lists or
Numpy arrays) of length depth containing these values
for each artery. The remaining parameters required by the
ArteryNetwork constructor are the elasticity parameter k,
blood density rho, blood viscosity nu, diastolic pressure
p0, number of output parameters ntr and Reynold’s num-
ber Re. The latter method is used by the examples shown
in this paper. The spatial discretisation is created by sup-
plying the spatial step size dx, which is used internally
to create Numpy arrays for all variables along the vessel.

pos = 0 # identifier for the next artery

arteries[pos] = Artery (Ru, Rd) # list containing artery

objects

radii_u = [Ru] # list containing upstream radii of arteries

radii_d = [Rd] # list containing downstream radii of

arteries

for j in range (depth):

lists for storage of upstream/downstream radii

of arteries on the next depth level

new_radii_u = []

new_radii_d = []

for i in range (length (radii_u)):

set daughter vessel radii using scaling

parameters a and b

ra_u = radii_u[i] * a

rb_u = radii_u[i] * b

ra_d = radii_d[i] * a

rb_d = radii_d[i] * b

pos + = 1

first daughter vessel using scaling

parameter a

arteries[pos] = Artery (ra_u, ra_d)

pos + = 1

second daughter vessel using scaling

parameter b

arteries[pos] = Artery (rb_u, rb_d)

store new radii for next iteration over j

new_radii_u[i] = ra_u

new_radii_u[i] = rb_u

new_radii_d[i] = ra_d

new_radii_d[i] = rb_d

radii_u = new_radii_u

radii_d = new_radii_d

Diem and Bressloff: VaMpy Art. 17, p. 5 of 7

Timing parameters are the time step size dt, time of one
period T and, optionally, the number of periods tc, which
defaults to one if left unspecified. Initial conditions are
supplied for q(z, t) as a single value q0, while the initial
condition for A(z, t) is calculated from the radii at rest.
The solve function is supplied with boundary condition
parameters q_in and out_args, where q_in contains the
values q(0, t) and out_args contains the parameters for a
3WK model.

The solver loops over the simulation time steps and
creates a LaxWendroff object for each Artery object

lw = LaxWendroff(theta, gamma, artery.nx)

with theta = dt/artery.dx, gamma = dt/2 and number of
spatial steps artery.nx. The next time step is computed
according to (5) and (6) at the inner grid points. Note that
the time step size needs to fulfill the Courant-Friedrichs-
Lewy (CFL) condition, which in this case is

	

1

 ,
q

t x c
A

−

Δ ≤ Δ ⋅ ± � (14)

where / /c A p Aρ= ∂ ∂ is the wave speed. The CFL
condition is automatically checked by the ArteryNetwork
solver and the simulation stops with an error message if
the condition is not met.

The following section demonstrates the use of VaMpy
for the simulation of the common carotid artery as done
by [4]. This publication was chosen as it provides detailed
information on the geometry used and Windkessel
parameter for the outlet boundary condition. A detailed
walkthrough of how to write configuration and simula-
tion files can be found on the documentation website.3

Quality control
The VaMpy Git repository contains unit tests to ensure
functions perform as expected. Additionally, the file
bifurcation_example.py demonstrates VaMpy’s
performance by validating its results against results in
[4] on the common carotid artery bifurcation. Whilst
unit tests demonstrate that the functionality of the soft-
ware meets expecations, validation against experimental
results and other researchers’ results ensures that the soft-
ware additionally generates sensible output data and that
parameters have been chosen sensibly. Users implement-
ing arteries using other parameters than the ones tested
in the example files in VaMpy should therefore always
cross-check their results against experimental or other
simulation results using the same parameters to ensure
that the choice of parameters is realistic.

The solution computed using VaMpy is shown in Figure 3
and matches the corresponding figures in [4]. Thus this
example demonstrates that VaMpy performs as expected.

Figure 3: One pulse in the common carotid artery using VaMpy: a) flow rate, b) pressure. Comparison with the results
for the same simulation in [4] validates the implementation of the blood flow equations in VaMpy.

Diem and Bressloff: VaMpyArt. 17, p. 6 of 7

To execute the example run

python bifurcation_example.py bifurcation.cfg

To plot the data created from the example run

python plot_example.py bifurcation.cfg

The first version of VaMpy focusses on the simula-
tion of a single bifurcation, i. e. one parent vessel with
two daughter vessels. The development of the first
version of VaMpy was based on the simulation of flow
through the middle cerebral artery in order to evaluate
lymphatic drainage through the wall of the artery [6],
and for this purpose a single bifurcation was regarded
sufficient. Validation on larger networks of arteries with
multiple levels of bifurcations has therefore not been
carried out yet, but is planned for the next release cycle.
Additionally, it is planned to offer a choice of alterna-
tive outlet boundary conditions, such as the structured
tree [1, 5]. It has been demonstrated that by taking into
account bifurcation pressure drops, the accuracy of
reduced order models such as the system of equations
(4) can improve significantly compared to higher order
models [16]. This means that a similar accuracy of blood
flow solutions could be achieved for 1D models com-
pared to 2D or 3D models by increasing the depth of the
arterial tree to be modelled.

(2) Availability
Operating system
VaMpy is compatible with any operating system that is
compatible with Python 2.7 and the dependent packages.

Programming language
VaMpy was written in and for Python 2.7 and above.

Additional system requirements
There are no additional system requirements. However,
the requirements for memory and processing power are
dependent on the number of the grid points.

Dependencies
NumPy, SciPy, Matplotlib, ConfigParser.

Software location
Archive

Name: GitHub
Persistent identifier: https://github.com/akdiem/

vampy/releases/tag/v1.0
Licence: Three-Clause BSD
Publisher: Alexandra K. Diem
Version published: v1.0
Date published: 22/03/2017

Code repository
Name: GitHub
Persistent identifier: https://github.com/akdiem/

vampy
Licence: Three-Clause BSD
Date published: 26/04/2016

Language
Python 2.7

(3) Reuse potential
Modelling blood flow dynamics is a useful tool in vascular
diseases research and 1D models provide good approxima-
tions. The method implemented in VaMpy is used by a vari-
ety of research groups [1, 4, 11] and therefore it is expected
that the reuse potential for VaMpy is high, especially in
multiscale simulations. Because the commonly accepted
CSV file format is used for input and output data for VaMpy
integration of results from VaMpy simulations with other
third-party software packages is expected to be straightfor-
ward. For example, VaMpy could be used as a boundary con-
dition for 3D simulations or constitute a part of multi-scale
simulations.

The publication of this software additionally provides
opportunities for other researchers to add functional-
ity and because VaMpy has been validated on results
published in the literature it simplifies and promotes
reproducibility of results. The following features are
planned for the next releases:

•	 asymmetric daughter vessel geometries with separate
Windkessel parameters,

•	 validation of the method on bifurcation networks
larger than two levels and

•	 integration of models of the dynamics of the artery
wall.

The current release of VaMpy was developed to imple-
ment a bifurcation at the middle cerebral artery as part of
a multi-scale model of lymphatic flow through the base-
ment membrane embedded in the artery wall, which is
relevant for resolving the mechanisms behind the onset
and progression of Alzheimer’s disease [6, 17].

Notes
	 1	 https://github.com/akdiem/vampy.
	 2	 http://akdiem.github.io/vampy/.
	 3	 http://akdiem.github.io/vampy/walkthrough.html.

Acknowledgements
The authors thank Maximilian Albert for advice and guid-
ance on the use of GitHub repositories and Python code
repository conventions.

Competing Interests
The authors have no competing interests to declare.

References
1.	 Olufsen, M S, et al. 2000 “Numerical Simulation and

Experimental Validation of Blood Flow in Arteries
with Structured-Tree Outflow Condition”. In: Annals of
Biomedical Engineering, 28(11), pp. 1281–1299. URL:
http://link.springer.com/article/10.1114/1.1326031.
DOI: https://doi.org/10.1114/1.1326031

2.	 Sherwin, S J, et al. 2003 “Computational model-
ling of 1D blood flow with variable mechanical
properties and its application to the simulation of

https://github.com/akdiem/vampy/releases/tag/v1.0
https://github.com/akdiem/vampy/releases/tag/v1.0
https://github.com/akdiem/vampy
https://github.com/akdiem/vampy
https://github.com/akdiem/vampy
http://akdiem.github.io/vampy/
http://akdiem.github.io/vampy/walkthrough.html
http://link.springer.com/article/10.1114/1.1326031
https://doi.org/10.1114/1.1326031

Diem and Bressloff: VaMpy Art. 17, p. 7 of 7

wave propagation in the human arterial system”. In:
International Journal for Numerical Methods In Fluids,
43(6–7), pp. 673–700. URL: http://onlinelibrary.wiley.
com/doi/10.1002/fld.543/abstract. DOI: https://doi.
org/10.1002/fld.543

3.	 Alastruey, J, et al. 2007 “Modelling the circle of Willis
to assess the effects of anatomical variations and oc-
clusions on cerebral flows”. In: Journal of Biomechanics,
40(8), pp. 1794–1805. DOI: https://doi.org/10.1016/j.
jbiomech.2006.008

4.	 Kolachalama, V, et al. 2007 “Predictive Haemody-
namics in a One-Dimensional Carotid Artery Bifur-
cation. Part I Application to Stent Design”. In: IEEE
Transactions on Biomedical Engineering, 54(5), pp.
802–812. URL: http://ieeexplore.ieee.org/docu-
ment/4155000/. DOI: https://doi.org/10.1109/
TBME.2006.889188

5.	 Cousins, W and Gremaud, P A 2014 “Impedance
boundary conditions for general transient hemody-
namics”. In: International Journal for Numerical Meth-
ods in Biomedical Engineering, 30(11), pp. 1249–1313.
URL: http://onlinelibrary.wiley.com/doi/10.1002/
cnm.2658/abstract. DOI: https://doi.org/10.1002/
cnm.2658

6.	 Diem, A K 2016 “Prediction of Perivascular Drainage
of Ab from the Brain Using Computational Modelling:
Implications for Alzheimer’s Disease”. PhD thesis.
University of Southampton.

7.	 LeVeque, R J 1992 Numerical Methods for Conserva-
tion Laws. 2nd. Basel, Switzerland: Birkhäuser Verlag,
pp. 122–135. DOI: https://doi.org/10.1007/978-3-
0348-8629-1_12

8.	 Richtmyer, R D 1963 “A Survey of Difference Methods
for Non-Steady Fluid Dynamics”. In: NCAR Technical
Notes, 63(2). URL: http://opensky.ucar.edu/islandora/
object/technotes:49. DOI: https://doi.org/10.5065/
D67P8WCQ

9.	 Smith, N P, Pullan, A J and Hunter, P J 2002 “An
Anatomically Based Model of Transient Coronary
Blood Flow in the Heart”. In: SIAM Journal on Applied
Mathematics, 62(3), pp. 990–1018. ISSN: 0036-
1399. URL: http://epubs.siam.org/doi/abs/10.1137/
S0036139999355199. DOI: https://doi.org/10.1137/
S0036139999355199

10.	Azer, K and Peskin, C S 2007 “A One-dimensional
Model of Blood Flow in Arteries with Friction and

Convection Based on the Womersley Velocity Pro-
file”. In: Cardiovascular Engineering, 7(2), pp. 51–73.
https://link.springer.com/article/10.1007/s10558-
007-9031-y. DOI: https://doi.org/10.1007/s10558-
007-9031-y

11.	Itu, L M and Suciu, C 2011 “Analysis of outflow
boundary condition implementations for 1D blood
flow models”. In: Proceedings of the 3rd International
Conference on E-Health and Bioengineering, 4. pp.
24–27. URL: http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=6150403.

12.	Mynard, J P and Nithiarasu, P 2008 “A 1D arterial
blood flow model incorporating ventricular pressure,
aortic valve and regional coronary flow using the
locally conservative Galerkin (LCG) method”. In:
Communications in Numerical Methods in Engineering,
24. pp. 367–417. ISSN: 20407939. URL: http://on-
linelibrary.wiley.com/doi/10.1002/cnm.1117/full.
DOI: https://doi.org/10.1002/cnm.1117

13.	Manini, S, et al. 2015 “pyNS: An Open-Source Frame-
work for 0D Haemodynamic Modelling”. In: Annals
of Biomedical Engineering, 43(6), pp. 1461–1473.
ISSN: 15739686. URL: https://link.springer.com/ar-
ticle/10.1007/s10439-014-1234-y. DOI: https://doi.
org/10.1007/s10439-014-1234-y

14.	Devault, K, et al. 2008 “Blood Flow in the Circle of
Willis Modeling and Calibration”. In: Multiscale Mod-
eling & Simulation, 7(2), pp. 888–909. URL: http://
epubs.siam.org/doi/abs/10.1137/07070231X. DOI:
https://doi.org/10.1137/07070231X

15.	Olufsen, M S 1998 “Modeling of the Arterial System
with Reference to an Anesthesia Simulator”. PhD
Thesis. University of Roskilde, Denmark. URL: http://
rudar.ruc.dk/handle/1800/744.

16.	Chnafa, C, et al. 2017 “Improved reduced-order
modelling of cerebrovascular flow distribution by
accounting for arterial bifurcation pressure drops”. In:
Journal of Biomechanicsiomechanics, 51, pp. 83–88.
DOI: https://doi.org/10.1016/j.jbiomech.2016.12.004

17.	Bakker, E N T P, et al. 2016 “Lymphatic Clearance
of the Brain Perivascular, Paravascular and Signifi-
cance for Neurodegenerative Diseases”. In: Cellular
and Molecular Neurobiology, 36(2), pp. 181–194. URL:
https://link.springer.com/article/10.1007/s10571-
015-0273-8. DOI: https://doi.org/10.1007/s10571-
015-0273-8

How to cite this article: Diem, A K and Bressloff, N W 2017 VaMpy: A Python Package to Solve 1D Blood Flow Problems. Journal
of Open Research Software, 5: 17, DOI: https://doi.org/10.5334/jors.159

Submitted: 13 December 2016 Accepted: 18 May 2017 Published: 08 June 2017

Copyright: © 2017 The Author(s). This is an open-access article distributed under the terms of the Creative Commons
Attribution 4.0 International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by
Ubiquity Press OPEN ACCESS

http://onlinelibrary.wiley.com/doi/10.1002/fld.543/abstract
http://onlinelibrary.wiley.com/doi/10.1002/fld.543/abstract
https://doi.org/10.1002/fld.543
https://doi.org/10.1002/fld.543
https://doi.org/10.1016/j.jbiomech.2006.008
https://doi.org/10.1016/j.jbiomech.2006.008
http://ieeexplore.ieee.org/document/4155000/
http://ieeexplore.ieee.org/document/4155000/
https://doi.org/10.1109/TBME.2006.889188
https://doi.org/10.1109/TBME.2006.889188
http://onlinelibrary.wiley.com/doi/10.1002/cnm.2658/abstract
http://onlinelibrary.wiley.com/doi/10.1002/cnm.2658/abstract
https://doi.org/10.1002/cnm.2658
https://doi.org/10.1002/cnm.2658
https://doi.org/10.1007/978-3-0348-8629-1_12
https://doi.org/10.1007/978-3-0348-8629-1_12
http://opensky.ucar.edu/islandora/object/technotes:49
http://opensky.ucar.edu/islandora/object/technotes:49
https://doi.org/10.5065/D67P8WCQ
https://doi.org/10.5065/D67P8WCQ
http://epubs.siam.org/doi/abs/10.1137/S0036139999355199
http://epubs.siam.org/doi/abs/10.1137/S0036139999355199
https://doi.org/10.1137/S0036139999355199
https://doi.org/10.1137/S0036139999355199
https://link.springer.com/article/10.1007/s10558-007-9031-y
https://link.springer.com/article/10.1007/s10558-007-9031-y
https://doi.org/10.1007/s10558-007-9031-y
https://doi.org/10.1007/s10558-007-9031-y
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6150403
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6150403
http://onlinelibrary.wiley.com/doi/10.1002/cnm.1117/full
http://onlinelibrary.wiley.com/doi/10.1002/cnm.1117/full
https://doi.org/10.1002/cnm.1117
https://link.springer.com/article/10.1007/s10439-014-1234-y
https://link.springer.com/article/10.1007/s10439-014-1234-y
https://doi.org/10.1007/s10439-014-1234-y
https://doi.org/10.1007/s10439-014-1234-y
http://epubs.siam.org/doi/abs/10.1137/07070231X
http://epubs.siam.org/doi/abs/10.1137/07070231X
https://doi.org/10.1137/07070231X
http://rudar.ruc.dk/handle/1800/744
http://rudar.ruc.dk/handle/1800/744
https://doi.org/10.1016/j.jbiomech.2016.12.004
https://link.springer.com/article/10.1007/s10571-015-0273-8
https://link.springer.com/article/10.1007/s10571-015-0273-8
https://doi.org/10.1007/s10571-015-0273-8
https://doi.org/10.1007/s10571-015-0273-8
https://doi.org/10.5334/jors.159
http://creativecommons.org/licenses/by/4.0/

	(1) Overview
	Introduction
	Implementation and architecture
	Quality control

	(2) Availability
	Operating system
	Programming language
	Additional system requirements
	Dependencies
	Software location
	Archive
	Code repository

	Language

	(3) Reuse potential
	Notes
	Acknowledgements
	Competing Interests
	References
	Figure 1
	Figure 2
	Figure 3

