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Finite-differences methods such as the Lax-Wendroff method (LW) are commonly used to solve 1D models 
of blood flow. These models solve for blood flow and lumen area and are useful in disease research, such 
as hypertension and atherosclerosis, where flow and pressure are good indicators for the presence of 
disease. Despite the popularity of the LW method to solve the blood flow equations, no implementation 
of a LW solver for these equations has been published and made publicly available. This leads to the 
reimplementation of the same methods within different research groups and makes verification of results 
more difficult. The Vascular Modelling in Python (VaMpy) toolkit is a Python package that aims to fill this 
gap. It implements Richtmyer’s two-step Lax-Wendroff scheme to solve 1D model equations of blood flow in 
arterial trees and aims at facilitating the solution of blood flow problems for various medical applications.
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(1) Overview
Introduction
One-dimensional (1D) modelling of the cardiovascular 
system is useful in predicting and understanding the 
dynamics of blood pressure propagation [1, 2, 3, 4, 5, 6]. 
Here, arteries are regarded as 1D axisymmetric tubes that 
are described by flux q inside the lumen and cross-sectional 
area A of the vessel lumen along the vessel length. One popu-
lar finite-differences method to numerically solve the equa-
tions governing blood flow through arteries is Richtmyer’s 
two-step Lax-Wendroff method [7, 8], which has been used 
by a number of groups [1, 4, 6, 9, 10, 11]. Alternative meth-
ods of solving the blood flow equations include for exam-
ple variations of the Galerkin finite-element method, which 
instead solve the blood flow equations for flow velocity u 
and cross-sectional area A [2, 12].

The computational implementation of the Lax-Wendroff 
method is straightforward and previously mentioned ref-
erences have produced results that are validated against 
experimental results, justifying the popularity of the 
method. However, no openly available implementation of 
the Lax-Wendroff method could be found, which results in 
the same work being carried out numerous times. Whilst 
one open-source Python package implementing a haemo-
dynamic model exists, pyNS focusses on the implementa-
tion of a 0D pulse wave propagation model, representing 

arteries as electrical circuits [13], and therefore its scope 
and application are different from VaMpy. Solutions 
computed using VaMpy are exported to the commonly 
used CSV file format, thereby allowing for the integration 
of data with most other software. For example, solutions 
calculated using VaMpy could be used as a boundary con-
dition for higher order models of larger arteries further 
upstream.

Arteries are considered to be elastic axisymmetrical 
tubes of initial radius r0(z) in a cylindrical coordinate 
system. The radius at rest is allowed to taper exponen-
tially for an arterial segment if different values are given 
for the upstream radius Ru and downstream radius Rd. An 
example geometry for the bifurcation of the common 
carotid artery, which is used to validate the solution cal-
culated by VaMpy is shown in Figure 1. Then the vessel 
radius for an arterial segment of length L is
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Blood flow through arteries is governed by the Navier-
Stokes equations for conservation of mass (continuity 
equation) and momentum in a 1D cylindrical coordinate 
system
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where u = (uz (r, z, t), ur (r, z, t)) denotes blood flow veloc-
tiy, p(z, t) denotes blood pressure, which is assumed to 
be uniform across r and the parameters ρ and ν denote 
blood density and viscosity, respectively. By integration 
of the governing equations over cross-sectional area 
A(z, t) = πR(z, t)2 the 1D conservation law
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can be derived. Details on the derivation of (4) can 
be found elsewhere [1, 6]. Here, the unknowns are 
the vessel cross-sectional area A(z, t) and flux q(z, t). 
Elasticity of the vessel is described by the quantity 
f(r0) with relaxed vessel radius r0(z), A0(z) is the relaxed 
cross-sectional vessel area, R(z, t) the vessel radius, δb is 
the boundary layer thickness and Re is the Reynold’s 
number.

Although these equations have been commonly used by 
various groups [1, 4, 5, 14], no publicly accessible imple-
mentation of the solution to (4) could be found, meaning 
that each publication from a separate group resulted in 
the reimplementation of the same or very similar meth-
ods and equations. Therefore, the Vascular Modelling in 
Python toolkit (VaMpy) was developed and published on 
GitHub1 with the documentation available on GitHub 
Pages.2 Support for the use of VaMpy is mainly available 
via the Issue Tracker feature on GitHub, but also via con-
tacting the authors.

Implementation and architecture
The VaMpy implementation and architecture are 
described in this section. VaMpy is object-oriented to 
allow for an intuitive understanding of its design and to 
facilitate the addition of new features. The base of the 
package is the class ArteryNetwork, which defines the 
arterial tree. The class contains methods that are applied 
on the entire network of arteries as well as boundary 
conditions. Each artery within the tree is defined as 
an object of the class Artery, which contains its own 
solver instance. The solver itself is implemented in the 
independent class LaxWendroff that implements the 
Lax-Wendroff method as described below. This approach 
allows for the integration of other solvers within the 
software.

The code was developed in Python 2.7 and implements 
Richtmyer’s two-step version of the Lax-Wendroff method 
[7, 8], which is second-order accurate in time and space. 
For a point in time, n, the solution at the next time step 
n + 1 at grid location m is given by

Figure 1: Example geometry of a bifurcation implemented in VaMpy. The example represents the common carotid 
artery (parent vessel) and its two daughter vessels, which are used for validation purposes of the software. Artery seg-
ments have an upstream and downstream radius, where the downstream radius has to be equal to or smaller than the 
upstream radius. The radius of the vessel then is 
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where  ( , )n

m m z n t= Δ ΔU U  is the solution at position m∆z 
and time n∆t. The half time step values for F and S are 
determined by
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for j = m ± 1/2. An illustration of the computational proce-
dure to determine 1n

m

+U  is shown in Figure 2. It illustrates 
that both initial conditions at n = 0 for all m and left and 
right boundary conditions are required to determine U.

Boundary conditions are applied at both ends of the ves-
sel and are either an inlet, outlet or bifurcation condition. 
The inlet boundary condition is used at the inlet of the 
parent vessel only [1]. It requires flux values q(0, t) to be 
prescribed. The inlet area is then calculated according to (5)
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This requires the evaluation of the term 
1/ 2

1/ 2

nq +

− , which is 
estimated from
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where 
1/ 2

0

nq +
 is evaluated from the function prescribing 

flux values at the inlet and 1/ 2

1/ 2

nq +  is evaluated from (6), see 
also [1, 4].

Algorithm 1: Iterative scheme to determine 1n

M

+U  
using a 3WK boundary condition [4]. An initial 
guess is made for 

1n

Mp +
, from which 

1n

Mq +
 is calculated 

using (9) and 1n

MA +  is calculated using the discretized 

mass conservation equation (12). Using 1n

MA +  the 
next iteration of 

1n

Mp +
 is found via the state equation 

(11). The algorithm stops after kmax iterations or 
when the difference between pressure estimates is 
less than the small threshold value .
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The outlet boundary condition is a three-element 
Windkessel (3WK) and its implementation follows [4]. The 
3WK equation is
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where R1, R2 and CT are resistance and compliance 
parameters. Discretization of (9) leads to
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Figure 2: Illustration of the LW method. The solution is fully known at time step n (black circles) and we are looking for 
the solution at grid point m at time step n + 1 (white circle). To determine the unknown solution, two intermediate 
solutions at half grid points m ± 1/2 and at half time step n + 1/2 are determined from grid points m – 1, m and 
m + 1 at current time step n. The intermediate solutions are then used in conjunction with the known solution at 
grid point m and current time step n to calculate the unknown solution at grid point m and next time step n + 1 [4].
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where M is the spatial position of the outlet. The 3WK 
boundary condition requires the evaluation of pressure in 
the vessel, which is related to area via the discretized State 
Equation [1]
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The outlet boundary condition is solved using an iterative 
scheme with an initial guess for 1n

Mp +  (see Algorithm 1). This 
requires a discretized version of the mass conservation 
equation to obtain an estimate for 1n

MA +
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Finally, a bifurcation boundary condition applies between 
any vessel that is not a terminal vessel and its two daughter 
vessels [1, 4]. Relations between parent and daughter ves-
sels lead to a system of eighteen equations for eighteen 
unknowns, which are solved using Newton’s method 
according to
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where k indicates the current iteration, = (x1, x2, ..., x18), J 
(xk)) is the Jacobian of the system of equations and fJ (xk) 
is the vector of residuals. The full system of equations 
required to solve the boundary conditions at bifurcations 
can be found elsewhere [6, 15].

Algorithm 2: Setup routine for a network of 
arteries. The artery network is created as a binary 
tree and contains 2depth – 1 arteries. At each depth 
level the up- and downstream radii of daughter 
vessels are calculated using the scaling parameters 
a and b. Artery objects are then created for each 
new daughter vessel and stored in a list.

A simulation model is set up by creating an ArteryNetwork 
object and solved by executing the following functions

from vampy.artery_network import ArteryNetwork
an = ArteryNetwork(Ru, Rd, a, b, lam, k, rho, 
nu, p0, depth, ntr, Re)
an.mesh(dx)
an.set_time(dt, T[, tc])
an.initial_conditions(q0)
an.solve(q_in, out_args)

A network of arteries is created using the upstream and 
downstream radii Ru and Rd of the parent vessel, the 
radius-to-length ratio lam and scaling parameters a and 
b using Algorithm 2. Two daughter vessels are created 
for a parent vessel by multiplying their upstream and 
downstream radii with scaling parameters a and b respec-
tively. This process is repeated until the desired tree depth 
is reached and the number of arteries in the network is 
2depth – 1. A second setup routine exists to create an artery 
network, which is

an = ArteryNetwork(Ru, Rd, lam, k, rho, nu, p0, 
depth, ntr, Re)

Here, Ru, Rd and lam are iterables (for example lists or 
Numpy arrays) of length depth containing these values 
for each artery. The remaining parameters required by the 
ArteryNetwork constructor are the elasticity parameter k, 
blood density rho, blood viscosity nu, diastolic pressure 
p0, number of output parameters ntr and Reynold’s num-
ber Re. The latter method is used by the examples shown 
in this paper. The spatial discretisation is created by sup-
plying the spatial step size dx, which is used internally 
to create Numpy arrays for all variables along the vessel. 

pos = 0 # identifier for the next artery

arteries[pos] = Artery (Ru, Rd) # list containing artery

# objects

radii_u = [Ru] # list containing upstream radii of arteries

radii_d = [Rd] # list containing downstream radii of

# arteries

for j in range (depth):

# lists for storage of upstream/downstream radii

# of arteries on the next depth level

new_radii_u = []

new_radii_d = []

for i in range (length (radii_u)):

# set daughter vessel radii using scaling

# parameters a and b

ra_u = radii_u[i] * a

rb_u = radii_u[i] * b

ra_d = radii_d[i] * a

rb_d = radii_d[i] * b

pos + = 1

# first daughter vessel using scaling

# parameter a

arteries[pos] = Artery (ra_u, ra_d)

pos + = 1

# second daughter vessel using scaling

# parameter b

arteries[pos] = Artery (rb_u, rb_d)

# store new radii for next iteration over j

new_radii_u[i] = ra_u

new_radii_u[i] = rb_u

new_radii_d[i] = ra_d

new_radii_d[i] = rb_d

radii_u = new_radii_u

radii_d = new_radii_d



Diem and Bressloff: VaMpy Art. 17, p. 5 of 7 

Timing parameters are the time step size dt, time of one 
period T and, optionally, the number of periods tc, which 
defaults to one if left unspecified. Initial conditions are 
supplied for q(z, t) as a single value q0, while the initial 
condition for A(z, t) is calculated from the radii at rest. 
The solve function is supplied with boundary condition 
parameters q_in and out_args, where q_in contains the 
values q(0, t) and out_args contains the parameters for a 
3WK model.

The solver loops over the simulation time steps and 
creates a LaxWendroff object for each Artery object

lw = LaxWendroff(theta, gamma, artery.nx)

with theta = dt/artery.dx, gamma = dt/2 and number of 
spatial steps artery.nx. The next time step is computed 
according to (5) and (6) at the inner grid points. Note that 
the time step size needs to fulfill the Courant-Friedrichs-
Lewy (CFL) condition, which in this case is

	

1

 ,
q

t x c
A

−

Δ ≤ Δ ⋅ ± � (14)

where / /c A p Aρ= ∂ ∂  is the wave speed. The CFL 
condition is automatically checked by the ArteryNetwork 
solver and the simulation stops with an error message if 
the condition is not met.

The following section demonstrates the use of VaMpy 
for the simulation of the common carotid artery as done 
by [4]. This publication was chosen as it provides detailed 
information on the geometry used and Windkessel 
parameter for the outlet boundary condition. A detailed 
walkthrough of how to write configuration and simula-
tion files can be found on the documentation website.3

Quality control
The VaMpy Git repository contains unit tests to ensure 
functions perform as expected. Additionally, the file 
bifurcation_example.py demonstrates VaMpy’s 
performance by validating its results against results in 
[4] on the common carotid artery bifurcation. Whilst 
unit tests demonstrate that the functionality of the soft-
ware meets expecations, validation against experimental 
results and other researchers’ results ensures that the soft-
ware additionally generates sensible output data and that 
parameters have been chosen sensibly. Users implement-
ing arteries using other parameters than the ones tested 
in the example files in VaMpy should therefore always 
cross-check their results against experimental or other 
simulation results using the same parameters to ensure 
that the choice of parameters is realistic.

The solution computed using VaMpy is shown in Figure 3 
and matches the corresponding figures in [4]. Thus this 
example demonstrates that VaMpy performs as expected.

Figure 3: One pulse in the common carotid artery using VaMpy: a) flow rate, b) pressure. Comparison with the results 
for the same simulation in [4] validates the implementation of the blood flow equations in VaMpy.
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To execute the example run

python bifurcation_example.py bifurcation.cfg

To plot the data created from the example run

python plot_example.py bifurcation.cfg

The first version of VaMpy focusses on the simula-
tion of a single bifurcation, i. e. one parent vessel with 
two daughter vessels. The development of the first 
version of VaMpy was based on the simulation of flow 
through the middle cerebral artery in order to evaluate 
lymphatic drainage through the wall of the artery [6], 
and for this purpose a single bifurcation was regarded 
sufficient. Validation on larger networks of arteries with 
multiple levels of bifurcations has therefore not been 
carried out yet, but is planned for the next release cycle. 
Additionally, it is planned to offer a choice of alterna-
tive outlet boundary conditions, such as the structured 
tree [1, 5]. It has been demonstrated that by taking into 
account bifurcation pressure drops, the accuracy of 
reduced order models such as the system of equations 
(4) can improve significantly compared to higher order 
models [16]. This means that a similar accuracy of blood 
flow solutions could be achieved for 1D models com-
pared to 2D or 3D models by increasing the depth of the 
arterial tree to be modelled.

(2) Availability
Operating system
VaMpy is compatible with any operating system that is 
compatible with Python 2.7 and the dependent packages.

Programming language
VaMpy was written in and for Python 2.7 and above.

Additional system requirements
There are no additional system requirements. However, 
the requirements for memory and processing power are 
dependent on the number of the grid points.

Dependencies
NumPy, SciPy, Matplotlib, ConfigParser.

Software location
Archive

Name: GitHub
Persistent identifier: https://github.com/akdiem/

vampy/releases/tag/v1.0
Licence: Three-Clause BSD
Publisher: Alexandra K. Diem
Version published: v1.0
Date published: 22/03/2017

Code repository
Name: GitHub
Persistent identifier: https://github.com/akdiem/

vampy
Licence: Three-Clause BSD
Date published: 26/04/2016

Language 
Python 2.7

(3) Reuse potential
Modelling blood flow dynamics is a useful tool in vascular 
diseases research and 1D models provide good approxima-
tions. The method implemented in VaMpy is used by a vari-
ety of research groups [1, 4, 11] and therefore it is expected 
that the reuse potential for VaMpy is high, especially in 
multiscale simulations. Because the commonly accepted 
CSV file format is used for input and output data for VaMpy 
integration of results from VaMpy simulations with other 
third-party software packages is expected to be straightfor-
ward. For example, VaMpy could be used as a boundary con-
dition for 3D simulations or constitute a part of multi-scale 
simulations.

The publication of this software additionally provides 
opportunities for other researchers to add functional-
ity and because VaMpy has been validated on results 
published in the literature it simplifies and promotes 
reproducibility of results. The following features are 
planned for the next releases:

•	 asymmetric daughter vessel geometries with separate 
Windkessel parameters,

•	 validation of the method on bifurcation networks 
larger than two levels and

•	 integration of models of the dynamics of the artery 
wall.

The current release of VaMpy was developed to imple-
ment a bifurcation at the middle cerebral artery as part of 
a multi-scale model of lymphatic flow through the base-
ment membrane embedded in the artery wall, which is 
relevant for resolving the mechanisms behind the onset 
and progression of Alzheimer’s disease [6, 17].

Notes
	 1	 https://github.com/akdiem/vampy.
	 2	 http://akdiem.github.io/vampy/.
	 3	 http://akdiem.github.io/vampy/walkthrough.html.
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